DP Mathematics HL Questionbank
10.4
Description
[N/A]Directly related questions
- 18M.3dm.hl.TZ0.2b.ii: Hence solve the linear congruence \(5x \equiv 7\left( {{\text{mod}}\,13} \right)\).
- 17N.3dm.hl.TZ0.4b: Hence or otherwise, find the general solution to the above system of linear congruences.
- 17N.3dm.hl.TZ0.4a: With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a...
- 15N.3dm.hl.TZ0.5b: Hence determine whether the base \(3\) number \(22010112200201\) is divisible by \(8\).
- 15N.3dm.hl.TZ0.5a: Given a sequence of non negative integers \(\{ {a_r}\} \) show that (i) ...
- 15N.3dm.hl.TZ0.3b: Hence, or otherwise, find the remainder when \({1982^{1982}}\) is divided by \(37\).
- 12M.3dm.hl.TZ0.1b: Find the least positive solution of \(123x \equiv 1(\bmod 2347)\) .
- 12M.3dm.hl.TZ0.5b: Find \({2^{2003}}(\bmod 11)\) and \({2^{2003}}(\bmod 13)\).
- 12M.3dm.hl.TZ0.5c: Use the Chinese remainder theorem, or otherwise, to evaluate \({2^{2003}}(\bmod 1001)\), noting...
- 12M.3dm.hl.TZ0.1c: Find the general solution of \(123z \equiv 5(\bmod 2347)\) .
- 12M.3dm.hl.TZ0.1d: State the solution set of \(123y \equiv 1(\bmod 2346)\) .
- 12N.3dm.hl.TZ0.3c: Using part (b), solve \(287w \equiv 2(\bmod 319\)) , where...
- 08M.3dm.hl.TZ1.2a: Define what is meant by the statement...
- 08M.3dm.hl.TZ1.2b: Hence prove that if \(x \equiv y(\bmod n)\) then \({x^2} \equiv {y^2}(\bmod n)\) .
- 08M.3dm.hl.TZ1.2c: Determine whether or not \({x^2} \equiv {y^2}(\bmod n)\) implies that \(x \equiv y(\bmod n)\) .
- 08M.3dm.hl.TZ2.3a: (i) Given that \(a \equiv d(\bmod n)\) and \(b \equiv c(\bmod n)\) prove...
- 08N.3dm.hl.TZ0.1c: In each of the following cases find the solutions, if any, of the given linear congruence. (i) ...
- 11M.3dm.hl.TZ0.1b: (i) Find the general solution to the diophantine equation \(56x + 315y = 21\). (ii) ...
- 11M.3dm.hl.TZ0.3a: Given that a , \(b \in \mathbb{N}\) and \(c \in {\mathbb{Z}^ + }\), show that if...
- 11M.3dm.hl.TZ0.3b: Using mathematical induction, show that \({9^n} \equiv 1(\bmod 4)\) , for \(n \in \mathbb{N}\) .
- 09M.3dm.hl.TZ0.4: Two mathematicians are planning their wedding celebration and are trying to arrange the seating...
- SPNone.3dm.hl.TZ0.3b: Find all the integers between 100 and 200 satisfying the simultaneous congruences...
- 10M.3dm.hl.TZ0.5: Given that \(a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\), show...
- 10M.3dm.hl.TZ0.1b: Find the general solution to the simultaneous congruences \[x \equiv 3(\bmod...
- 10N.3dm.hl.TZ0.2: (a) Find the general solution for the following system of congruences. ...
- 13M.3dm.hl.TZ0.1b: (i) Find the general solution to the diophantine equation \(332x - 99y = 1\). (ii) ...
- 11N.3dm.hl.TZ0.4: Anna is playing with some cars and divides them into three sets of equal size. However, when she...
- 12M.3dm.hl.TZ0.5a: Use the result \(2003 = 6 \times 333 + 5\) and Fermat’s little theorem to show that...
- 14M.3dm.hl.TZ0.2c: Consider the simultaneous equations \(4x + y + 5z = a\) \(2x + z = b\) ...
- 13N.3dm.hl.TZ0.5b: (i) Show that \({3^{{3^m}}} \equiv 3({\text{mod}}4)\) for all \(m \in \mathbb{N}\). (ii) ...
- 14N.3dm.hl.TZ0.4c: Using your answers to parts (a) and (b) find the remainder when \({41^{82}}\) is divided by \(55\).
- 14N.3dm.hl.TZ0.4a: Solve, by any method, the following system of linear congruences \(x \equiv 9(\bmod...
Sub sections and their related questions
Modular arithmetic.
- 12M.3dm.hl.TZ0.1b: Find the least positive solution of \(123x \equiv 1(\bmod 2347)\) .
- 12M.3dm.hl.TZ0.1c: Find the general solution of \(123z \equiv 5(\bmod 2347)\) .
- 12M.3dm.hl.TZ0.1d: State the solution set of \(123y \equiv 1(\bmod 2346)\) .
- 12M.3dm.hl.TZ0.5a: Use the result \(2003 = 6 \times 333 + 5\) and Fermat’s little theorem to show that...
- 12M.3dm.hl.TZ0.5b: Find \({2^{2003}}(\bmod 11)\) and \({2^{2003}}(\bmod 13)\).
- 12M.3dm.hl.TZ0.5c: Use the Chinese remainder theorem, or otherwise, to evaluate \({2^{2003}}(\bmod 1001)\), noting...
- 12N.3dm.hl.TZ0.3c: Using part (b), solve \(287w \equiv 2(\bmod 319\)) , where...
- 08M.3dm.hl.TZ1.2a: Define what is meant by the statement...
- 08M.3dm.hl.TZ1.2b: Hence prove that if \(x \equiv y(\bmod n)\) then \({x^2} \equiv {y^2}(\bmod n)\) .
- 08M.3dm.hl.TZ1.2c: Determine whether or not \({x^2} \equiv {y^2}(\bmod n)\) implies that \(x \equiv y(\bmod n)\) .
- 11M.3dm.hl.TZ0.1b: (i) Find the general solution to the diophantine equation \(56x + 315y = 21\). (ii) ...
- 11M.3dm.hl.TZ0.3a: Given that a , \(b \in \mathbb{N}\) and \(c \in {\mathbb{Z}^ + }\), show that if...
- 11M.3dm.hl.TZ0.3b: Using mathematical induction, show that \({9^n} \equiv 1(\bmod 4)\) , for \(n \in \mathbb{N}\) .
- 10M.3dm.hl.TZ0.5: Given that \(a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\), show...
- 11N.3dm.hl.TZ0.4: Anna is playing with some cars and divides them into three sets of equal size. However, when she...
- 14M.3dm.hl.TZ0.2c: Consider the simultaneous equations \(4x + y + 5z = a\) \(2x + z = b\) ...
- 13N.3dm.hl.TZ0.5b: (i) Show that \({3^{{3^m}}} \equiv 3({\text{mod}}4)\) for all \(m \in \mathbb{N}\). (ii) ...
- 14N.3dm.hl.TZ0.4c: Using your answers to parts (a) and (b) find the remainder when \({41^{82}}\) is divided by \(55\).
- 15N.3dm.hl.TZ0.3b: Hence, or otherwise, find the remainder when \({1982^{1982}}\) is divided by \(37\).
- 15N.3dm.hl.TZ0.5a: Given a sequence of non negative integers \(\{ {a_r}\} \) show that (i) ...
- 15N.3dm.hl.TZ0.5b: Hence determine whether the base \(3\) number \(22010112200201\) is divisible by \(8\).
- 17N.3dm.hl.TZ0.4a: With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a...
- 17N.3dm.hl.TZ0.4b: Hence or otherwise, find the general solution to the above system of linear congruences.
- 18M.3dm.hl.TZ0.2b.ii: Hence solve the linear congruence \(5x \equiv 7\left( {{\text{mod}}\,13} \right)\).
The solution of linear congruences.
- 12M.3dm.hl.TZ0.1b: Find the least positive solution of \(123x \equiv 1(\bmod 2347)\) .
- 12M.3dm.hl.TZ0.1c: Find the general solution of \(123z \equiv 5(\bmod 2347)\) .
- 12M.3dm.hl.TZ0.1d: State the solution set of \(123y \equiv 1(\bmod 2346)\) .
- 12M.3dm.hl.TZ0.5c: Use the Chinese remainder theorem, or otherwise, to evaluate \({2^{2003}}(\bmod 1001)\), noting...
- 12N.3dm.hl.TZ0.3c: Using part (b), solve \(287w \equiv 2(\bmod 319\)) , where...
- 08N.3dm.hl.TZ0.1c: In each of the following cases find the solutions, if any, of the given linear congruence. (i) ...
- 13M.3dm.hl.TZ0.1b: (i) Find the general solution to the diophantine equation \(332x - 99y = 1\). (ii) ...
- 18M.3dm.hl.TZ0.2b.ii: Hence solve the linear congruence \(5x \equiv 7\left( {{\text{mod}}\,13} \right)\).
Solution of simultaneous linear congruences (Chinese remainder theorem).
- 12M.3dm.hl.TZ0.5c: Use the Chinese remainder theorem, or otherwise, to evaluate \({2^{2003}}(\bmod 1001)\), noting...
- 08M.3dm.hl.TZ2.3a: (i) Given that \(a \equiv d(\bmod n)\) and \(b \equiv c(\bmod n)\) prove...
- 09M.3dm.hl.TZ0.4: Two mathematicians are planning their wedding celebration and are trying to arrange the seating...
- SPNone.3dm.hl.TZ0.3b: Find all the integers between 100 and 200 satisfying the simultaneous congruences...
- 10M.3dm.hl.TZ0.1b: Find the general solution to the simultaneous congruences \[x \equiv 3(\bmod...
- 10N.3dm.hl.TZ0.2: (a) Find the general solution for the following system of congruences. ...
- 14N.3dm.hl.TZ0.4a: Solve, by any method, the following system of linear congruences \(x \equiv 9(\bmod...