Date | May 2018 | Marks available | 3 | Reference code | 18M.3dm.hl.TZ0.2 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Solve and Hence | Question number | 2 | Adapted from | N/A |
Question
Consider the linear congruence \(ax \equiv b\left( {{\text{mod}}\,p} \right)\) where \(a,\,b,\,p,\,x \in {\mathbb{Z}^ + }\), \(p\) is prime and \(a\) is not a multiple of \(p\).
State Fermat’s little theorem.
Use Fermat’s little theorem to show that \(x \equiv {a^{p - 2}}b\left( {{\text{mod}}\,p} \right)\).
Hence solve the linear congruence \(5x \equiv 7\left( {{\text{mod}}\,13} \right)\).
Markscheme
EITHER
if \(p\) is prime (and \(a\) is any integer) then \({a^p} \equiv a\left( {{\text{mod}}\,p} \right)\) A1A1
Note: Award A1 for \(p\) prime and A1 for the congruence or for stating that \(p\left| {{a^p} - a} \right.\).
OR
A1A1
Note: Award A1 for \(p\) prime and A1 for the congruence or for stating that \(p\left| {{a^{p - 1}} - 1} \right.\).
Note: Condone use of equals sign provided \(\left( {{\text{mod}}\,p} \right)\) is seen.
[2 marks]
multiplying both sides of the linear congruence by \({a^{p - 2}}\) (M1)
\({a^{p - 1}}x \equiv {a^{p - 2}}b\left( {{\text{mod}}\,p} \right)\) A1
as \({a^{p - 1}} \equiv 1\left( {{\text{mod}}\,p} \right)\) R1
\(x \equiv {a^{p - 2}}b\left( {{\text{mod}}\,p} \right)\) AG
[3 marks]
\(x \equiv {5^{11}} \times 7\left( {{\text{mod}}\,13} \right)\) (M1)
\( \equiv 341796875\left( {{\text{mod}}\,13} \right)\) (A1)
Note: Accept equivalent calculation eg, using \({5^2} \equiv - 1\,{\text{mod}}\,13\).
\( \equiv 4\left( {{\text{mod}}\,13} \right)\) A1
[3 marks]