Date | November 2015 | Marks available | 5 | Reference code | 15N.3dm.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Show that | Question number | 5 | Adapted from | N/A |
Question
Given a sequence of non negative integers {ar} show that
(i) n∑r=0ar(x+1)r(mod where x \in \{ 2,{\text{ }}3,{\text{ }}4 \ldots \} .
(ii) \sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} } .
Hence determine whether the base 3 number 22010112200201 is divisible by 8.
Markscheme
(i) (x + 1)(\bmod x) \equiv 1(\bmod x) (M1)
{(x + 1)^r}(\bmod x)\left( { \equiv {1^r}(\bmod x)} \right) = 1(\bmod x) A1
\sum\limits_{r - 0}^n {{a_r}{{(x + 1)}^r}(\bmod x) \equiv \sum\limits_{r = 0}^n {{a_r}(\bmod x)} } AG
(ii) METHOD 1
\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = \sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){3^{2r}}} } M1
= \sum\limits_{r = 0}^n {({3^{2r + 1}}{a_{2r + 1}} + {3^{2r}}{a_{2r}})} M1A1
= \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} AG
METHOD 2
\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = 3{a_1} + {a_0} + 9(3{a_3} + {a_2}) + \ldots + {9^n}(3{a_{2n + 1}} + {a_{2n}})} A1
= {a_0} + 3{a_1} + {3^2}{a_2} + {3^3}{a_3} + \ldots + {3^{2n + 1}}{a_{2n + 1}} M1A1
= \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} AG
[5 marks]
METHOD 1
using part (a) (ii) to separate the number into pairs of digits (M1)
22010112200201{\text{ }}({\text{base }}3) \equiv 8115621{\text{ }}({\text{base }}9) A1
using the sum of digits identity from part (a) (i) (M1)
Note: Award M1 if result from a(i) is used to show that the number is divisible by 2, even if no other valid working given.
{\text{sum}} = 24 A1
which is divisible by 8 A1
hence 22010112200201 (base 3) is divisible by 8
METHOD 2
\sum\limits_{r = 0}^{13} {{a_r}{3^r}\sum\limits_{r = 0}^6 {(3{a_{2r + 1}} + {a_{2r}}){9^r}} } (M1)
\equiv \sum\limits_{r = 0}^6 {(3{a_{2r + 1}} + {a_{2r}})(\bmod 8)} A1
= {a_0} + 3{a_1} + {a_2} + 3{a_3} + \ldots + {a_{12}} + 3{a_{13}}(\bmod 8) M1
= (1 + 3 \times 0 + 2 + 3 \times 0 + \ldots + 3 \times 2)(\bmod 8) \equiv 24(\bmod 8) A1
\equiv 0 OR divisible by 8 A1
hence 22010112200201 (base 3) is divisible by 8
[5 marks]
Total [10 marks]