Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2015 Marks available 5 Reference code 15N.3dm.hl.TZ0.5
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Show that Question number 5 Adapted from N/A

Question

Given a sequence of non negative integers {ar} show that

(i)     nr=0ar(x+1)r(mod where x \in \{ 2,{\text{ }}3,{\text{ }}4 \ldots \} .

(ii)     \sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} } .

[5]
a.

Hence determine whether the base 3 number 22010112200201 is divisible by 8.

[5]
b.

Markscheme

(i)     (x + 1)(\bmod x) \equiv 1(\bmod x)     (M1)

{(x + 1)^r}(\bmod x)\left( { \equiv {1^r}(\bmod x)} \right) = 1(\bmod x)     A1

\sum\limits_{r - 0}^n {{a_r}{{(x + 1)}^r}(\bmod x) \equiv \sum\limits_{r = 0}^n {{a_r}(\bmod x)} }     AG

(ii)     METHOD 1

\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = \sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){3^{2r}}} }     M1

= \sum\limits_{r = 0}^n {({3^{2r + 1}}{a_{2r + 1}} + {3^{2r}}{a_{2r}})}     M1A1

= \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}}     AG

METHOD 2

\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = 3{a_1} + {a_0} + 9(3{a_3} + {a_2}) +  \ldots  + {9^n}(3{a_{2n + 1}} + {a_{2n}})}     A1

= {a_0} + 3{a_1} + {3^2}{a_2} + {3^3}{a_3} +  \ldots  + {3^{2n + 1}}{a_{2n + 1}}     M1A1

= \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}}     AG

[5 marks]

a.

METHOD 1

using part (a) (ii) to separate the number into pairs of digits     (M1)

22010112200201{\text{ }}({\text{base }}3) \equiv 8115621{\text{ }}({\text{base }}9)     A1

using the sum of digits identity from part (a) (i)     (M1)

 

Note:     Award M1 if result from a(i) is used to show that the number is divisible by 2, even if no other valid working given.

 

{\text{sum}} = 24     A1

which is divisible by 8     A1

hence 22010112200201 (base 3) is divisible by 8

METHOD 2

\sum\limits_{r = 0}^{13} {{a_r}{3^r}\sum\limits_{r = 0}^6 {(3{a_{2r + 1}} + {a_{2r}}){9^r}} }     (M1)

\equiv \sum\limits_{r = 0}^6 {(3{a_{2r + 1}} + {a_{2r}})(\bmod 8)}     A1

= {a_0} + 3{a_1} + {a_2} + 3{a_3} +  \ldots  + {a_{12}} + 3{a_{13}}(\bmod 8)     M1

= (1 + 3 \times 0 + 2 + 3 \times 0 +  \ldots  + 3 \times 2)(\bmod 8) \equiv 24(\bmod 8)     A1

\equiv 0 OR divisible by 8     A1

hence 22010112200201 (base 3) is divisible by 8

[5 marks]

Total [10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.4 » Modular arithmetic.
Show 23 related questions

View options