Processing math: 100%

User interface language: English | Español

Date November 2015 Marks available 5 Reference code 15N.3dm.hl.TZ0.5
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term Determine and Hence Question number 5 Adapted from N/A

Question

Given a sequence of non negative integers {ar} show that

(i)     nr=0ar(x+1)r(modx)=nr=0ar(modx) where x{2, 3, 4}.

(ii)     nr=0(3a2r+1+a2r)9r=2n+1r=0ar3r.

[5]
a.

Hence determine whether the base 3 number 22010112200201 is divisible by 8.

[5]
b.

Markscheme

(i)     (x+1)(modx)1(modx)     (M1)

(x+1)r(modx)(1r(modx))=1(modx)     A1

nr0ar(x+1)r(modx)nr=0ar(modx)     AG

(ii)     METHOD 1

nr=0(3a2r+1+a2r)9r=nr=0(3a2r+1+a2r)32r     M1

=nr=0(32r+1a2r+1+32ra2r)     M1A1

=2n+1r=0ar3r     AG

METHOD 2

nr=0(3a2r+1+a2r)9r=3a1+a0+9(3a3+a2)++9n(3a2n+1+a2n)     A1

=a0+3a1+32a2+33a3++32n+1a2n+1     M1A1

=2n+1r=0ar3r     AG

[5 marks]

a.

METHOD 1

using part (a) (ii) to separate the number into pairs of digits     (M1)

22010112200201 (base 3)8115621 (base 9)     A1

using the sum of digits identity from part (a) (i)     (M1)

 

Note:     Award M1 if result from a(i) is used to show that the number is divisible by 2, even if no other valid working given.

 

sum=24     A1

which is divisible by 8     A1

hence 22010112200201 (base 3) is divisible by 8

METHOD 2

13r=0ar3r6r=0(3a2r+1+a2r)9r     (M1)

6r=0(3a2r+1+a2r)(mod8)     A1

=a0+3a1+a2+3a3++a12+3a13(mod8)     M1

=(1+3×0+2+3×0++3×2)(mod8)24(mod8)     A1

0 OR divisible by 8     A1

hence 22010112200201 (base 3) is divisible by 8

[5 marks]

Total [10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.4 » Modular arithmetic.
Show 23 related questions

View options