Date | November 2015 | Marks available | 5 | Reference code | 15N.3dm.hl.TZ0.5 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Determine and Hence | Question number | 5 | Adapted from | N/A |
Question
Given a sequence of non negative integers {ar} show that
(i) n∑r=0ar(x+1)r(modx)=n∑r=0ar(modx) where x∈{2, 3, 4…}.
(ii) n∑r=0(3a2r+1+a2r)9r=2n+1∑r=0ar3r.
Hence determine whether the base 3 number 22010112200201 is divisible by 8.
Markscheme
(i) (x+1)(modx)≡1(modx) (M1)
(x+1)r(modx)(≡1r(modx))=1(modx) A1
n∑r−0ar(x+1)r(modx)≡n∑r=0ar(modx) AG
(ii) METHOD 1
n∑r=0(3a2r+1+a2r)9r=n∑r=0(3a2r+1+a2r)32r M1
=n∑r=0(32r+1a2r+1+32ra2r) M1A1
=2n+1∑r=0ar3r AG
METHOD 2
n∑r=0(3a2r+1+a2r)9r=3a1+a0+9(3a3+a2)+…+9n(3a2n+1+a2n) A1
=a0+3a1+32a2+33a3+…+32n+1a2n+1 M1A1
=2n+1∑r=0ar3r AG
[5 marks]
METHOD 1
using part (a) (ii) to separate the number into pairs of digits (M1)
22010112200201 (base 3)≡8115621 (base 9) A1
using the sum of digits identity from part (a) (i) (M1)
Note: Award M1 if result from a(i) is used to show that the number is divisible by 2, even if no other valid working given.
sum=24 A1
which is divisible by 8 A1
hence 22010112200201 (base 3) is divisible by 8
METHOD 2
13∑r=0ar3r6∑r=0(3a2r+1+a2r)9r (M1)
≡6∑r=0(3a2r+1+a2r)(mod8) A1
=a0+3a1+a2+3a3+…+a12+3a13(mod8) M1
=(1+3×0+2+3×0+…+3×2)(mod8)≡24(mod8) A1
≡0 OR divisible by 8 A1
hence 22010112200201 (base 3) is divisible by 8
[5 marks]
Total [10 marks]