User interface language: English | Español

Date May 2008 Marks available 11 Reference code 08M.3dm.hl.TZ2.3
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ2
Command term Prove, Solve, and Hence Question number 3 Adapted from N/A

Question

(i)     Given that \(a \equiv d(\bmod n)\) and \(b \equiv c(\bmod n)\) prove that

\[(a + b) \equiv (c + d)(\bmod n){\text{ .}}\]

(ii)     Hence solve the system

\[\left\{ {\begin{array}{*{20}{r}}
  {2x + 5y \equiv 1(\bmod 6)} \\
  {x + y \equiv 5(\bmod 6)}
\end{array}} \right.\]

[11]
a.

Show that \({x^{97}} - x + 1 \equiv 0(\bmod 97)\) has no solution.

[3]
b.

Markscheme

(i)     \(a \equiv d(\bmod n){\text{ and }}b \equiv c(\bmod n)\)

so \(a - d = pn{\text{ and }}b - c = qn\) ,     M1A1

\(a - d + b - c = pn + qn\)

\((a + b) - (c + d) = n(p + q)\)     A1

\((a + b) \equiv (c + d)(\bmod n)\)     AG

 

(ii)     \(\left\{ {\begin{array}{*{20}{r}}
  {2x + 5y \equiv 1(\bmod 6)} \\
  {x + y \equiv 5(\bmod 6)}
\end{array}} \right.\)

adding \(3x + 6y \equiv 0(\bmod 6)\)     M1

\(6y \equiv 0(\bmod 6){\text{ so }}3x \equiv 0(\bmod 6)\)     R1

\(x \equiv 0{\text{ or }}x \equiv 2{\text{ or }}x \equiv 4(\bmod 6)\)     A1A1A1

for \(x \equiv 0,{\text{ }}0 + y \equiv 5(\bmod 6){\text{ so }}y \equiv 5(\bmod 6)\)     A1

for \(x \equiv 2,{\text{ }}2 + y \equiv 5(\bmod 6){\text{ so }}y \equiv 3(\bmod 6)\)     A1

If \(x \equiv 4(\bmod 6),{\text{ }}4 + y \equiv 5(\bmod 6){\text{ so }}y \equiv 1(\bmod 6)\)     A1

[11 marks]

a.

Suppose x is a solution

97 is prime so \({x^{97}} \equiv x(\bmod 97)\)     M1

\({x^{97}} - x \equiv 0(\bmod 97)\)     A1

\({x^{97}} - x + 1 \equiv 1 \ne 0(\bmod 97)\)

Hence there are no solutions     R1

[3 marks]

b.

Examiners report

Part (a) (i) was not found difficult but using it in part (a)(ii) resulted in two or three correct lines and then abandonment of the problem.

a.

Part (a) (i) was not found difficult but using it in part (a)(ii) resulted in two or three correct lines and then abandonment of the problem.

b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.4 » Solution of simultaneous linear congruences (Chinese remainder theorem).

View options