Processing math: 100%

User interface language: English | Español

Date May 2008 Marks available 11 Reference code 08M.3dm.hl.TZ2.3
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ2
Command term Prove, Solve, and Hence Question number 3 Adapted from N/A

Question

(i)     Given that ad(modn) and bc(modn) prove that

(a+b)(c+d)(modn) .

(ii)     Hence solve the system

{2x+5y1(mod6)x+y5(mod6)

[11]
a.

Show that x97x+10(mod97) has no solution.

[3]
b.

Markscheme

(i)     ad(modn) and bc(modn)

so ad=pn and bc=qn ,     M1A1

ad+bc=pn+qn

(a+b)(c+d)=n(p+q)     A1

(a+b)(c+d)(modn)     AG

 

(ii)     {2x+5y1(mod6)x+y5(mod6)

adding 3x+6y0(mod6)     M1

6y0(mod6) so 3x0(mod6)     R1

x0 or x2 or x4(mod6)     A1A1A1

for x0, 0+y5(mod6) so y5(mod6)     A1

for x2, 2+y5(mod6) so y3(mod6)     A1

If x4(mod6), 4+y5(mod6) so y1(mod6)     A1

[11 marks]

a.

Suppose x is a solution

97 is prime so x97x(mod97)     M1

x97x0(mod97)     A1

x97x+110(mod97)

Hence there are no solutions     R1

[3 marks]

b.

Examiners report

Part (a) (i) was not found difficult but using it in part (a)(ii) resulted in two or three correct lines and then abandonment of the problem.

a.

Part (a) (i) was not found difficult but using it in part (a)(ii) resulted in two or three correct lines and then abandonment of the problem.

b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.4 » Solution of simultaneous linear congruences (Chinese remainder theorem).

View options