Date | November 2017 | Marks available | 2 | Reference code | 17N.3dm.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | State | Question number | 4 | Adapted from | N/A |
Question
Consider the system of linear congruences
x≡2(mod5)x≡5(mod8)x≡1(mod3).
With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a unique solution modulo 120 to this system of linear congruences.
Hence or otherwise, find the general solution to the above system of linear congruences.
Markscheme
5, 8 and 3 are pairwise relatively prime (or equivalent) R1
120 is the product of 5, 8 and 3 R1
[2 marks]
METHOD 1
x=2+5t, t∈Z and 2+5t≡5(mod8) M1
5t≡3(mod8)⇒5t≡35(mod8) (M1)
t=7+8u, u∈Z (A1)
x=2+5(7+8u)⇒x=37+40u (A1)
37+40u≡1(mod3)⇒u≡0(mod3) (A1)
u=3v, v∈Z (A1)
x=37+40(3v)
x=37+120v (x≡37(mod120)) A1
METHOD 2
attempting systematic listing of possibilities M1
solutions to x≡2(mod5) are x=2, 7, 12, …, 37, … (A1)
solutions to x≡5(mod8) are x=5, 13, 21, …, 37, … (A1)
solutions to x≡1(mod3) are x=1, 4, 7, …, 37, … (A1)
a solution is x=37 (A1)
using the Chinese remainder theorem (M1)
x=37+120v (x≡37(mod120)) A1
METHOD 3
attempting to find Mi, i=1, 2, 3
M1=8×3=24, M2=5×3=15 and M3=5×8=40 M1
using Mixi≡1(modmi), i=1, 2, 3 to obtain
24x1≡1(mod5), 15x2≡1(mod8) and 40x3≡1(mod3) M1
x1≡4(mod5), x2≡7(mod8) and x3≡1(mod3) (A1)(A1)(A1)
use of x≡a1x1M1+a2x2M2+a3x3M3(modM) gives
x=(2×4×24+5×7×15+1×1×40)(mod120) (M1)
x≡757(mod120) (≡37(mod120)) (x=37+120v, v∈Z) A1
[7 marks]