Processing math: 100%

User interface language: English | Español

Date November 2017 Marks available 2 Reference code 17N.3dm.hl.TZ0.4
Level HL only Paper Paper 3 Discrete mathematics Time zone TZ0
Command term State Question number 4 Adapted from N/A

Question

Consider the system of linear congruences

x2(mod5)x5(mod8)x1(mod3).

With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a unique solution modulo 120 to this system of linear congruences.

[2]
a.

Hence or otherwise, find the general solution to the above system of linear congruences.

[7]
b.

Markscheme

5, 8 and 3 are pairwise relatively prime (or equivalent)     R1

120 is the product of 5, 8 and 3     R1

[2 marks]

a.

METHOD 1

x=2+5t, tZ and 2+5t5(mod8)     M1

5t3(mod8)5t35(mod8)     (M1)

t=7+8u, uZ     (A1)

x=2+5(7+8u)x=37+40u     (A1)

37+40u1(mod3)u0(mod3)     (A1)

u=3v, vZ     (A1)

x=37+40(3v)

x=37+120v (x37(mod120))     A1

 

METHOD 2

attempting systematic listing of possibilities     M1

solutions to x2(mod5) are x=2, 7, 12, , 37,      (A1)

solutions to x5(mod8) are x=5, 13, 21, , 37,      (A1)

solutions to x1(mod3) are x=1, 4, 7, , 37,      (A1)

a solution is x=37     (A1)

using the Chinese remainder theorem     (M1)

x=37+120v (x37(mod120))     A1

 

METHOD 3

attempting to find Mi, i=1, 2, 3

M1=8×3=24, M2=5×3=15 and M3=5×8=40     M1

using Mixi1(modmi), i=1, 2, 3 to obtain

24x11(mod5), 15x21(mod8) and 40x31(mod3)     M1

x14(mod5), x27(mod8) and x31(mod3)     (A1)(A1)(A1)

use of xa1x1M1+a2x2M2+a3x3M3(modM) gives

x=(2×4×24+5×7×15+1×1×40)(mod120)     (M1)

x757(mod120) (37(mod120)) (x=37+120v, vZ)     A1

 

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 10 - Option: Discrete mathematics » 10.4 » Modular arithmetic.
Show 23 related questions

View options