Date | November 2017 | Marks available | 7 | Reference code | 17N.3dm.hl.TZ0.4 |
Level | HL only | Paper | Paper 3 Discrete mathematics | Time zone | TZ0 |
Command term | Hence or otherwise and Find | Question number | 4 | Adapted from | N/A |
Question
Consider the system of linear congruences
\[\begin{array}{*{20}{l}} {x \equiv 2(\bmod 5)} \\ {x \equiv 5(\bmod 8)} \\ {x \equiv 1(\bmod 3).} \end{array}\]
With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a unique solution modulo 120 to this system of linear congruences.
Hence or otherwise, find the general solution to the above system of linear congruences.
Markscheme
5, 8 and 3 are pairwise relatively prime (or equivalent) R1
120 is the product of 5, 8 and 3 R1
[2 marks]
METHOD 1
\(x = 2 + 5t,{\text{ }}t \in \mathbb{Z}\) and \(2 + 5t \equiv 5(\bmod 8)\) M1
\(5t \equiv 3(\bmod 8) \Rightarrow 5t \equiv 35(\bmod 8)\) (M1)
\(t = 7 + 8u,{\text{ }}u \in \mathbb{Z}\) (A1)
\(x = 2 + 5(7 + 8u) \Rightarrow x = 37 + 40u\) (A1)
\(37 + 40u \equiv 1(\bmod 3) \Rightarrow u \equiv 0(\bmod 3)\) (A1)
\(u = 3v,{\text{ }}v \in \mathbb{Z}\) (A1)
\(x = 37 + 40(3v)\)
\(x = 37 + 120v{\text{ }}\left( {x \equiv 37(\bmod 120)} \right)\) A1
METHOD 2
attempting systematic listing of possibilities M1
solutions to \(x \equiv 2(\bmod 5)\) are \(x = 2,{\text{ }}7,{\text{ }}12,{\text{ }} \ldots ,{\text{ }}37,{\text{ }} \ldots \) (A1)
solutions to \(x \equiv 5(\bmod 8)\) are \(x = 5,{\text{ }}13,{\text{ }}21,{\text{ }} \ldots ,{\text{ }}37,{\text{ }} \ldots \) (A1)
solutions to \(x \equiv 1(\bmod 3)\) are \(x = 1,{\text{ }}4,{\text{ }}7,{\text{ }} \ldots ,{\text{ }}37,{\text{ }} \ldots \) (A1)
a solution is \(x = 37\) (A1)
using the Chinese remainder theorem (M1)
\(x = 37 + 120v{\text{ }}\left( {x \equiv 37(\bmod 120)} \right)\) A1
METHOD 3
attempting to find \({M_i},{\text{ }}i = 1,{\text{ }}2,{\text{ 3}}\)
\({M_1} = 8 \times 3 = 24,{\text{ }}{M_2} = 5 \times 3 = 15\) and \({M_3} = 5 \times 8 = 40\) M1
using \({M_i}{x_i} \equiv 1(\bmod {m_i}),{\text{ }}i = 1,{\text{ }}2,{\text{ }}3\) to obtain
\(24{x_1} \equiv 1(\bmod 5),{\text{ }}15{x_2} \equiv 1(\bmod 8)\) and \(40{x_3} \equiv 1(\bmod 3)\) M1
\({x_1} \equiv 4(\bmod 5),{\text{ }}{x_2} \equiv 7(\bmod 8)\) and \({x_3} \equiv 1(\bmod 3)\) (A1)(A1)(A1)
use of \(x \equiv {a_1}{x_1}{M_1} + {a_2}{x_2}{M_2} + {a_3}{x_3}{M_3}(\bmod M)\) gives
\(x = (2 \times 4 \times 24 + 5 \times 7 \times 15 + 1 \times 1 \times 40)(\bmod 120)\) (M1)
\(x \equiv 757(\bmod 120){\text{ }}\left( { \equiv 37(\bmod 120)} \right){\text{ }}(x = 37 + 120v,{\text{ }}v \in \mathbb{Z})\) A1
[7 marks]