DP Mathematics HL Questionbank

Derivatives of xn , sinx , cosx , tanx , ex and \lnx .
Description
[N/A]Directly related questions
- 12M.1.hl.TZ1.12a: Show that f′(x)=12x−12(1−x)−32 and deduce that f...
- 12N.1.hl.TZ0.8a: Find the gradient of the tangent to the curve at the point (π, π) .
- 12N.2.hl.TZ0.12c: Let a = 3k and b = k . Find dLdα.
- SPNone.1.hl.TZ0.12a: Show that f″(x)=2exsin(x+π2) .
- SPNone.1.hl.TZ0.13b: Show that f is a one-to-one function.
- SPNone.1.hl.TZ0.9a: (i) Find an expression for f′(x) . (ii) Given that the equation f′(x)=0 has...
- SPNone.1.hl.TZ0.12b: Obtain a similar expression for f(4)(x) .
- SPNone.2.hl.TZ0.13a: Obtain an expression for f′(x) .
- SPNone.3ca.hl.TZ0.1a: Show that f″(x)=−1(1+sinx) .
- 13M.2.hl.TZ1.13a: Verify that this is true for f(x)=x3+1 at x = 2.
- 13M.2.hl.TZ1.13b: Given that g(x)=xex2, show that g′(x)>0 for all values of x.
- 13M.2.hl.TZ1.13c: Using the result given at the start of the question, find the value of the gradient function of...
- 13M.2.hl.TZ2.13d: Show that...
- 11N.1.hl.TZ0.8b: Find the value of θ for which dtdθ=0.
- 11N.3ca.hl.TZ0.5a: Given that y=ln(1+e−x2), show that...
- 11M.1.hl.TZ1.12b: Show that there is a point of inflexion on the graph and determine its coordinates.
- 11M.1.hl.TZ1.12c: Sketch the graph of y=f(x) , indicating clearly the asymptote, x-intercept and the local...
- 11M.1.hl.TZ1.12a: (i) Solve the equation f′(x)=0 . (ii) Hence show the graph of f has a local...
- 14M.1.hl.TZ2.14c: Given that f(x)=h(x)+h∘g(x), (i) find f′(x) in simplified form; (ii) ...
- 13N.1.hl.TZ0.10a(i)(ii): (i) Find an expression for f′(x). (ii) Hence determine the coordinates of the point...
- 15N.3ca.hl.TZ0.2a: Show that f″(x)=2(f′(x)−f(x)).
- 15M.1.hl.TZ1.11a: Find dydx.
- 15M.1.hl.TZ2.11c: Let y=g∘f(x), find an exact value for dydx at the...
- 15M.2.hl.TZ1.6: A function f is defined by f(x)=x3+ex+1, x∈R....
- 15N.1.hl.TZ0.4a: Find dydx.
- 15N.1.hl.TZ0.8b: Consider f(x)=sin(ax) where a is a constant. Prove by mathematical induction that...
- 14N.2.hl.TZ0.10b: (i) State dAdx. (ii) Verify that...