Processing math: 100%

User interface language: English | Español

Date May 2015 Marks available 6 Reference code 15M.1.hl.TZ2.11
Level HL only Paper 1 Time zone TZ2
Command term Express and Find Question number 11 Adapted from N/A

Question

Consider the functions f(x)=tanx, 0 x<π2 and g(x)=x+1x1, xR, x1.

Find an expression for gf(x), stating its domain.

[2]
a.

Hence show that gf(x)=sinx+cosxsinxcosx.

[2]
b.

Let y=gf(x), find an exact value for dydx at the point on the graph of y=gf(x) where x=π6, expressing your answer in the form a+b3, a, bZ.

[6]
c.

Show that the area bounded by the graph of y=gf(x), the x-axis and the lines x=0 and x=π6 is ln(1+3).

[6]
d.

Markscheme

gf(x)=tanx+1tanx1     A1

xπ4, 0x<π2     A1

[2 marks]

a.

tanx+1tanx1=sinxcosx+1sinxcosx1     M1A1

=sinx+cosxsinxcosx     AG

[2 marks]

b.

METHOD 1

dydx=(sinxcosx)(cosxsinx)(sinx+cosx)(cosx+sinx)(sinxcosx)2     M1(A1)

dydx=(2sinxcosxcos2xsin2x)(2sinxcosx+cos2x+sin2x)cos2x+sin2x2sinxcosx

=21sin2x

Substitute π6 into any formula for dydx     M1

21sinπ3

=2132     A1

=423

=423(2+32+3)     M1

=8431=843     A1

METHOD 2

dydx=(tanx1)sec2x(tanx+1)sec2x(tanx1)2     M1A1

=2sec2x(tanx1)2     A1

=2sec2π6(tanπ61)2=2(43)(131)2=8(13)2     M1

 

Note: Award M1 for substitution π6.

 

8(13)2=8(423)(4+23)(4+23)=843     M1A1

[6 marks]

c.

Area |π60sinx+cosxsinxcosxdx|     M1

=|[ln|sinxcosx|]π60|     A1

 

Note:     Condone absence of limits and absence of modulus signs at this stage.

 

=|ln|sinπ6cosπ6|ln|sin0cos0||     M1

=|ln|1232|0|

=|ln(312)|     A1

=ln(312)=ln(231)     A1

=ln(231×3+13+1)     M1

=ln(3+1)     AG

[6 marks]

Total [16 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of xn , sinx , cosx , tanx , ex and \lnx .
Show 26 related questions

View options