User interface language: English | Español

Date November 2015 Marks available 2 Reference code 15N.1.hl.TZ0.4
Level HL only Paper 1 Time zone TZ0
Command term Find Question number 4 Adapted from N/A

Question

Consider the curve \(y = \frac{1}{{1 - x}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).

Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).

[2]
a.

Determine the equation of the normal to the curve at the point \(x = 3\) in the form \(ax + by + c = 0\) where \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\).

[4]
b.

Markscheme

\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {(1 - x)^{ - 2}}\;\;\;\left( { = \frac{1}{{{{(1 - x)}^2}}}} \right)\)     (M1)A1

[2 marks]

a.

gradient of Tangent \( = \frac{1}{4}\)     (A1)

gradient of Normal \( =  - 4\)     (M1)

\(y + \frac{1}{2} =  - 4(x - 3)\) or attempt to find \(c\) in \(y = mx + c\)     M1

\(8x + 2y - 23 = 0\)     A1

[4 marks]

Total [6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of \({x^n}\) , \(\sin x\) , \(\cos x\) , \(\tan x\) , \({{\text{e}}^x}\) and \\(\ln x\) .
Show 26 related questions

View options