Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.1.hl.TZ0.13
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 13 Adapted from N/A

Question

The function f is defined by

f(x)={2x1,x

where a , b \in \mathbb{R} .

Given that f and its derivative, f' , are continuous for all values in the domain of f , find the values of a and b .

[6]
a.

Show that f is a one-to-one function.

[3]
b.

Obtain expressions for the inverse function {f^{ - 1}} and state their domains.

[5]
c.

Markscheme

f continuous \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f(x)     M1

4a + 2b = 8     A1

f'(x) = \left\{ {\begin{array}{*{20}{c}}   {2,}&{x < 2} \\   {2ax + b,}&{2 < x < 3} \end{array}} \right.     A1

f'{\text{ continuous}} \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f'(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f'(x)

4a + b = 2     A1

solve simultaneously     M1

to obtain a = –1 and b = 6     A1

[6 marks]

a.

for x \leqslant 2,{\text{ }}f'(x) = 2 > 0     A1

for 2 < x < 3,{\text{ }}f'(x) = - 2x + 6 > 0     A1

since f'(x) > 0 for all values in the domain of f , f is increasing     R1

therefore one-to-one     AG

[3 marks]

b.

x = 2y - 1 \Rightarrow y = \frac{{x + 1}}{2}     M1

x = - {y^2} + 6y - 5 \Rightarrow {y^2} - 6y + x + 5 = 0     M1

y = 3 \pm \sqrt {4 - x}

therefore

{f^{ - 1}}(x) = \left\{ {\begin{array}{*{20}{c}}   {\frac{{x + 1}}{2},}&{x \leqslant 3} \\   {3 - \sqrt {4 - x} ,}&{3 < x < 4} \end{array}} \right.     A1A1A1

Note: Award A1 for the first line and A1A1 for the second line.

 

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of {x^n} , \sin x , \cos x , \tan x , {{\text{e}}^x} and \\ln x .
Show 26 related questions

View options