Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2015 Marks available 4 Reference code 15N.3ca.hl.TZ0.2
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Show that Question number 2 Adapted from N/A

Question

Let f(x)=exsinx.

Show that f(x)=2(f(x)f(x)).

[4]
a.

By further differentiation of the result in part (a) , find the Maclaurin expansion of f(x), as far as the term in x5.

[6]
b.

Markscheme

f(x)=exsinx+excosx     M1A1

f(x)=exsinx+excosxexsinx+excosx=2excosx     A1

=2(exsinx+excosxexsinx)     M1

=2(f(x)f(x))     AG

[4 marks]

a.

f(0)=0, f(0)=1, f(0)=2(10)=2     (M1)A1

 

Note:     Award M1 for attempt to find f(0), f(0) and f(0).

 

f(x)=2(f(x)f(x))     (M1)

f(0)=2(21)=2, fIV(0)=2(22)=0, fV(0)=2(02)=4     A1

so f(x)=x+22!x2+23!x345!+     (M1)A1

=x+x2+13x3130x5+

[6 marks]

Total [10 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of xn , sinx , cosx , tanx , ex and \lnx .
Show 26 related questions

View options