Date | November 2015 | Marks available | 4 | Reference code | 15N.3ca.hl.TZ0.2 |
Level | HL only | Paper | Paper 3 Calculus | Time zone | TZ0 |
Command term | Show that | Question number | 2 | Adapted from | N/A |
Question
Let \(f(x) = {{\text{e}}^x}\sin x\).
Show that \(f''(x) = 2\left( {f'(x) - f(x)} \right)\).
By further differentiation of the result in part (a) , find the Maclaurin expansion of \(f(x)\), as far as the term in \({x^5}\).
Markscheme
\(f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x\) M1A1
\(f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x = 2{{\text{e}}^x}\cos x\) A1
\( = 2\left( {{{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x} \right)\) M1
\( = 2\left( {f'(x) - f(x)} \right)\) AG
[4 marks]
\(f(0) = 0,{\text{ }}f'(0) = 1,{\text{ }}f''(0) = 2(1 - 0) = 2\) (M1)A1
Note: Award M1 for attempt to find \(f(0)\), \(f'(0)\) and \(f''(0)\).
\(f'''(x) = 2\left( {f''(x) - f'(x)} \right)\) (M1)
\(f'''(0) = 2(2 - 1) = 2,{\text{ }}{f^{IV}}(0) = 2(2 - 2) = 0,{\text{ }}{f^V}(0) = 2(0 - 2) = - 4\) A1
so \(f(x) = x + \frac{2}{{2!}}{x^2} + \frac{2}{{3!}}{x^3} - \frac{4}{{5!}} + \ldots \) (M1)A1
\( = x + {x^2} + \frac{1}{3}{x^3} - \frac{1}{{30}}{x^5} + \ldots \)
[6 marks]
Total [10 marks]