Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2011 Marks available 5 Reference code 11N.3ca.hl.TZ0.5
Level HL only Paper Paper 3 Calculus Time zone TZ0
Command term Show that Question number 5 Adapted from N/A

Question

Given that y=ln(1+ex2), show that dydx=ey21.

[5]
a.

Hence, by repeated differentiation of the above differential equation, find the Maclaurin series for y as far as the term in x3, showing that two of the terms are zero.

[11]
b.

Markscheme

METHOD 1

y=ln(1+ex2)

dydx=2ex2(1+ex)=ex1+ex     M1A1

now 1+ex2=ey     M1

1+ex=2ey

ex=2ey1     (A1)

dydx=2ey+12ey     (A1)

Note: Only one of the two above A1 marks may be implied.

 

dydx=ey2=1     AG

Note: Candidates may find dydx as a function of x and then work backwards from the given answer. Award full marks if done correctly.

 

METHOD 2

y=ln(1+ex2)

ey=1+ex2     M1

ex=2ey1

x=ln(2ey1)     A1

dxdy=12ey1×2ey     M1A1

dydx=2ey12ey     A1

dydx=ey21     AG

[5 marks]

a.

METHOD 1

when x=0, y=ln1=0     A1

when x=0, dydx=121=12     A1

d2ydx2=ey2dydx     M1A1

when x=0, d2ydx2=12×12=14     A1

d3ydx3=ey2(dydx)2ey2d2ydx2     M1A1A1

when x=0, d3ydx3=12×1412×14=0     A1

y=f(0)+f(0)x+f

\Rightarrow y = 0 - \frac{1}{2}x + \frac{1}{8}{x^2} + 0{x^3} + \ldots     (M1)A1

two of the above terms are zero     AG

METHOD 2

when x = 0,{\text{ }}y = \ln 1 = 0     A1

when x = 0,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{2} - 1 = - \frac{1}{2}     A1

\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = \frac{{ - {{\text{e}}^{ - y}}}}{2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {{\text{e}}^{ - y}}}}{2}\left( {\frac{{{{\text{e}}^{ - y}}}}{2} - 1} \right) = \frac{{ - {{\text{e}}^{2y}}}}{4} + \frac{{{{\text{e}}^{ - y}}}}{2}     M1A1

when x = 0,{\text{ }}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = - \frac{1}{4} + \frac{1}{2} = \frac{1}{4}     A1

\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = \left( {\frac{{{{\text{e}}^{ - 2y}}}}{2} - \frac{{{{\text{e}}^{ - y}}}}{2}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}}     M1A1A1

when x = 0,{\text{ }}\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = - \frac{1}{2} \times \left( {\frac{1}{2} - \frac{1}{2}} \right) = 0     A1

y = f(0) + f'(0)x + \frac{{f''(0)}}{{2!}}{x^2} + \frac{{f'''(0)}}{{3!}}{x^3}

\Rightarrow y = 0 - \frac{1}{2}x + \frac{1}{8}{x^2} + 0{x^3} + \ldots     (M1)A1

two of the above terms are zero     AG

[11 marks]

b.

Examiners report

Many candidates were successful in (a) with a variety of methods seen. In (b) the use of the chain rule was often omitted when differentiating {{{\text{e}}^{ - y}}} with respect to x. A number of candidates tried to repeatedly differentiate the original expression, which was not what was asked for, although partial credit was given for this. In this case, they often found problems in simplifying the algebra.

a.

Many candidates were successful in (a) with a variety of methods seen. In (b) the use of the chain rule was often omitted when differentiating {{{\text{e}}^{ - y}}} with respect to x. A number of candidates tried to repeatedly differentiate the original expression, which was not what was asked for, although partial credit was given for this. In this case, they often found problems in simplifying the algebra.

b.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of {x^n} , \sin x , \cos x , \tan x , {{\text{e}}^x} and \\ln x .
Show 26 related questions

View options