Processing math: 100%

User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.2.hl.TZ0.13
Level HL only Paper 2 Time zone TZ0
Command term Obtain Question number 13 Adapted from N/A

Question

The function f is defined on the domain [0, 2] by f(x)=ln(x+1)sin(πx) .

Obtain an expression for f(x) .

[3]
a.

Sketch the graphs of f and f on the same axes, showing clearly all x-intercepts.

[4]
b.

Find the x-coordinates of the two points of inflexion on the graph of f .

[2]
c.

Find the equation of the normal to the graph of f where x = 0.75 , giving your answer in the form y = mx + c .

[3]
d.

Consider the points A(a , f(a)) , B(b , f(b)) and C(c , f(c)) where a , b and c (a<b<c) are the solutions of the equation f(x)=f(x) . Find the area of the triangle ABC.

[6]
e.

Markscheme

f(x)=1x+1sin(πx)+πln(x+1)cos(πx)     M1A1A1

[3 marks]

a.

     A4

Note: Award A1A1 for graphs, A1A1 for intercepts.

 

[4 marks]

b.

0.310, 1.12     A1A1

[2 marks]

c.

f(0.75)=0.839092     A1

so equation of normal is y0.39570812=10.839092(x0.75)     M1

y=1.19x0.498     A1

[3 marks]

d.

A(0, 0)

B(c0.548,d0.432)     A1

C(e1.44,f0.881)     A1

Note: Accept coordinates for B and C rounded to 3 significant figures.

 

area ΔABC=12|(ci + dj) × (ei + fj)|     M1A1

=12(decf)     A1

=0.554     A1

[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of xn , sinx , cosx , tanx , ex and \lnx .
Show 26 related questions

View options