User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Show that Question number 12 Adapted from N/A

Question

The function f is defined by \(f(x) = {{\text{e}}^x}\sin x\) .

Show that \(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) .

[3]
a.

Obtain a similar expression for \({f^{(4)}}(x)\) .

[4]
b.

Suggest an expression for \({f^{(2n)}}(x)\), \(n \in {\mathbb{Z}^ + }\), and prove your conjecture using mathematical induction.

[8]
c.

Markscheme

\(f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x\)     A1

\(f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x\)     A1

\( = 2{{\text{e}}^x}\cos x\)     A1

\( = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\)     AG

[3 marks]

a.

\(f'''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)\)     A1

\({f^{(4)}}(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) - 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\)     A1

\( = 4{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)\)     A1

\( = 4{{\text{e}}^x}\sin (x + \pi )\)     A1

[4 marks]

b.

the conjecture is that

\({f^{(2n)}}(x) = {2^n}{{\text{e}}^x}\sin \left( {x + \frac{{n\pi }}{2}} \right)\)     A1

for n  = 1, this formula gives

\(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) which is correct     A1

let the result be true for n = k , \(\left( {i.e.{\text{ }}{f^{(2k)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)} \right)\)     M1

consider \({f^{(2k + 1)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)\)     M1

\({f^{\left( {2(k + 1)} \right)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) - {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)\)     A1

\( = {2^{k + 1}}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)\)     A1

\( = {2^{k + 1}}{{\text{e}}^x}\sin \left( {x + \frac{{(k + 1)\pi }}{2}} \right)\)     A1

therefore true for \(n = k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 1\)

the result is proved by induction.     R1

Note: Award the final R1 only if the two M marks have been awarded.

 

[8 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of \({x^n}\) , \(\sin x\) , \(\cos x\) , \(\tan x\) , \({{\text{e}}^x}\) and \\(\ln x\) .
Show 26 related questions

View options