Date | None Specimen | Marks available | 4 | Reference code | SPNone.1.hl.TZ0.12 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Obtain | Question number | 12 | Adapted from | N/A |
Question
The function f is defined by \(f(x) = {{\text{e}}^x}\sin x\) .
Show that \(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) .
Obtain a similar expression for \({f^{(4)}}(x)\) .
Suggest an expression for \({f^{(2n)}}(x)\), \(n \in {\mathbb{Z}^ + }\), and prove your conjecture using mathematical induction.
Markscheme
\(f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x\) A1
\(f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x\) A1
\( = 2{{\text{e}}^x}\cos x\) A1
\( = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) AG
[3 marks]
\(f'''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)\) A1
\({f^{(4)}}(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) - 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) A1
\( = 4{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)\) A1
\( = 4{{\text{e}}^x}\sin (x + \pi )\) A1
[4 marks]
the conjecture is that
\({f^{(2n)}}(x) = {2^n}{{\text{e}}^x}\sin \left( {x + \frac{{n\pi }}{2}} \right)\) A1
for n = 1, this formula gives
\(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) which is correct A1
let the result be true for n = k , \(\left( {i.e.{\text{ }}{f^{(2k)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)} \right)\) M1
consider \({f^{(2k + 1)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)\) M1
\({f^{\left( {2(k + 1)} \right)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) - {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)\) A1
\( = {2^{k + 1}}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)\) A1
\( = {2^{k + 1}}{{\text{e}}^x}\sin \left( {x + \frac{{(k + 1)\pi }}{2}} \right)\) A1
therefore true for \(n = k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 1\)
the result is proved by induction. R1
Note: Award the final R1 only if the two M marks have been awarded.
[8 marks]