Date | None Specimen | Marks available | 4 | Reference code | SPNone.1.hl.TZ0.12 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Obtain | Question number | 12 | Adapted from | N/A |
Question
The function f is defined by f(x)=exsinx .
Show that f″ .
Obtain a similar expression for {f^{(4)}}(x) .
Suggest an expression for {f^{(2n)}}(x), n \in {\mathbb{Z}^ + }, and prove your conjecture using mathematical induction.
Markscheme
f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x A1
f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x A1
= 2{{\text{e}}^x}\cos x A1
= 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) AG
[3 marks]
f'''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) A1
{f^{(4)}}(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) - 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) A1
= 4{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) A1
= 4{{\text{e}}^x}\sin (x + \pi ) A1
[4 marks]
the conjecture is that
{f^{(2n)}}(x) = {2^n}{{\text{e}}^x}\sin \left( {x + \frac{{n\pi }}{2}} \right) A1
for n = 1, this formula gives
f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) which is correct A1
let the result be true for n = k , \left( {i.e.{\text{ }}{f^{(2k)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)} \right) M1
consider {f^{(2k + 1)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) M1
{f^{\left( {2(k + 1)} \right)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) - {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) A1
= {2^{k + 1}}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) A1
= {2^{k + 1}}{{\text{e}}^x}\sin \left( {x + \frac{{(k + 1)\pi }}{2}} \right) A1
therefore true for n = k \Rightarrow true for n = k + 1 and since true for n = 1
the result is proved by induction. R1
Note: Award the final R1 only if the two M marks have been awarded.
[8 marks]