Processing math: 1%

User interface language: English | Español

Date None Specimen Marks available 4 Reference code SPNone.1.hl.TZ0.12
Level HL only Paper 1 Time zone TZ0
Command term Obtain Question number 12 Adapted from N/A

Question

The function f is defined by f(x)=exsinx .

Show that f .

[3]
a.

Obtain a similar expression for {f^{(4)}}(x) .

[4]
b.

Suggest an expression for {f^{(2n)}}(x), n \in {\mathbb{Z}^ + }, and prove your conjecture using mathematical induction.

[8]
c.

Markscheme

f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x     A1

f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x     A1

= 2{{\text{e}}^x}\cos x     A1

= 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)     AG

[3 marks]

a.

f'''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)     A1

{f^{(4)}}(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) - 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)     A1

= 4{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)     A1

= 4{{\text{e}}^x}\sin (x + \pi )     A1

[4 marks]

b.

the conjecture is that

{f^{(2n)}}(x) = {2^n}{{\text{e}}^x}\sin \left( {x + \frac{{n\pi }}{2}} \right)     A1

for n  = 1, this formula gives

f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) which is correct     A1

let the result be true for n = k , \left( {i.e.{\text{ }}{f^{(2k)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)} \right)     M1

consider {f^{(2k + 1)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)     M1

{f^{\left( {2(k + 1)} \right)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) - {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)     A1

= {2^{k + 1}}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)     A1

= {2^{k + 1}}{{\text{e}}^x}\sin \left( {x + \frac{{(k + 1)\pi }}{2}} \right)     A1

therefore true for n = k \Rightarrow true for n = k + 1 and since true for n = 1

the result is proved by induction.     R1

Note: Award the final R1 only if the two M marks have been awarded.

 

[8 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 6 - Core: Calculus » 6.2 » Derivatives of {x^n} , \sin x , \cos x , \tan x , {{\text{e}}^x} and \\ln x .
Show 26 related questions

View options