Date | May 2018 | Marks available | 3 | Reference code | 18M.1.hl.TZ1.11 |
Level | HL only | Paper | 1 | Time zone | TZ1 |
Command term | Show that | Question number | 11 | Adapted from | N/A |
Question
Consider \(w = 2\left( {{\text{cos}}\frac{\pi }{3} + {\text{i}}\,{\text{sin}}\frac{\pi }{3}} \right)\)
These four points form the vertices of a quadrilateral, Q.
Express w2 and w3 in modulus-argument form.
Sketch on an Argand diagram the points represented by w0 , w1 , w2 and w3.
Show that the area of the quadrilateral Q is \(\frac{{21\sqrt 3 }}{2}\).
Let \(z = 2\left( {{\text{cos}}\frac{\pi }{n} + {\text{i}}\,{\text{sin}}\frac{\pi }{n}} \right),\,\,n \in {\mathbb{Z}^ + }\). The points represented on an Argand diagram by \({z^0},\,\,{z^1},\,\,{z^2},\, \ldots \,,\,\,{z^n}\) form the vertices of a polygon \({P_n}\).
Show that the area of the polygon \({P_n}\) can be expressed in the form \(a\left( {{b^n} - 1} \right){\text{sin}}\frac{\pi }{n}\), where \(a,\,\,b\, \in \mathbb{R}\).
Markscheme
\({w^2} = 4\text{cis}\left( {\frac{{2\pi }}{3}} \right){\text{;}}\,\,{w^3} = 8{\text{cis}}\left( \pi \right)\) (M1)A1A1
Note: Accept Euler form.
Note: M1 can be awarded for either both correct moduli or both correct arguments.
Note: Allow multiplication of correct Cartesian form for M1, final answers must be in modulus-argument form.
[3 marks]
A1A1
[2 marks]
use of area = \(\frac{1}{2}ab\,\,{\text{sin}}\,C\) M1
\(\frac{1}{2} \times 1 \times 2 \times {\text{sin}}\frac{\pi }{3} + \frac{1}{2} \times 2 \times 4 \times {\text{sin}}\frac{\pi }{3} + \frac{1}{2} \times 4 \times 8 \times {\text{sin}}\frac{\pi }{3}\) A1A1
Note: Award A1 for \(C = \frac{\pi }{3}\), A1 for correct moduli.
\( = \frac{{21\sqrt 3 }}{2}\) AG
Note: Other methods of splitting the area may receive full marks.
[3 marks]
\(\frac{1}{2} \times {2^0} \times {2^1} \times {\text{sin}}\frac{\pi }{n} + \frac{1}{2} \times {2^1} \times {2^2} \times {\text{sin}}\frac{\pi }{n} + \frac{1}{2} \times {2^2} \times {2^3} \times {\text{sin}}\frac{\pi }{n} + \, \ldots \, + \frac{1}{2} \times {2^{n - 1}} \times {2^n} \times {\text{sin}}\frac{\pi }{n}\) M1A1
Note: Award M1 for powers of 2, A1 for any correct expression including both the first and last term.
\( = {\text{sin}}\frac{\pi }{n} \times \left( {{2^0} + {2^2} + {2^4} + \, \ldots \, + {2^{n - 2}}} \right)\)
identifying a geometric series with common ratio 22(= 4) (M1)A1
\( = \frac{{1 - {2^{2n}}}}{{1 - 4}} \times {\text{sin}}\frac{\pi }{n}\) M1
Note: Award M1 for use of formula for sum of geometric series.
\( = \frac{1}{3}\left( {{4^n} - 1} \right){\text{sin}}\frac{\pi }{n}\) A1
[6 marks]