Date | November 2015 | Marks available | 6 | Reference code | 15N.2.hl.TZ0.7 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
Triangle \(ABC\) has area \({\text{21 c}}{{\text{m}}^{\text{2}}}\). The sides \(AB\) and \(AC\) have lengths \(6\) cm and \(11\) cm respectively. Find the two possible lengths of the side \(BC\).
Markscheme
\(21 = \frac{1}{2} \bullet 6 \bullet 11 \bullet \sin A\) (M1)
\(\sin A = \frac{7}{{11}}\) (A1)
EITHER
\(\hat A = 0.6897 \ldots ,{\text{ }}2.452 \ldots \left( {\hat A = \arcsin \frac{7}{{11}},{\text{ }}\pi - \arcsin \frac{7}{{11}} = 39.521 \ldots ^\circ ,{\text{ }}140.478 \ldots ^\circ } \right)\) (A1)
OR
\(\cos A = \pm \frac{{6\sqrt 2 }}{{11}}\;\;\;( = \pm 0.771 \ldots )\) (A1)
THEN
\({\text{B}}{{\text{C}}^2} = {6^2} + {11^2} - 2 \bullet 6 \bullet 11\cos A\) (M1)
\({\text{BC}} = 16.1\) or \(7.43\) A1A1
Note: Award M1A1A0M1A1A0 if only one correct solution is given.
[6 marks]