Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date May 2010 Marks available 6 Reference code 10M.2.hl.TZ2.5
Level HL only Paper 2 Time zone TZ2
Command term Find Question number 5 Adapted from N/A

Question

Consider the triangle ABC where BˆAC=70, AB = 8 cm and AC = 7 cm. The point D on the side BC is such that BDDC=2.

Determine the length of AD.

Markscheme

use of cosine rule: BC=(82+722×7×8cos70)=8.6426     (M1)A1

Note: Accept an expression for BC2.

 

BD=5.7617(CD=2.88085)     A1

use of sine rule: ˆB=arcsin(7sin70BC)=49.561(ˆC=60.4387)     (M1)A1

use of cosine rule: AD=82+BD22×BD×8cosB=6.12 (cm)     A1

Note: Scale drawing method not acceptable.

 

[6 marks]

Examiners report

Well done.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.7 » The cosine rule.

View options