Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

User interface language: English | Español

Date November 2016 Marks available 3 Reference code 16N.2.hl.TZ0.7
Level HL only Paper 2 Time zone TZ0
Command term Find Question number 7 Adapted from N/A

Question

In a triangle ABC, AB=4 cm, BC=3 cm and BˆAC=π9.

Use the cosine rule to find the two possible values for AC.

[5]
a.

Find the difference between the areas of the two possible triangles ABC.

[3]
b.

Markscheme

METHOD 1

let AC=x

32=x2+428xcosπ9    M1A1

attempting to solve for x     (M1)

x=1.09, 6.43    A1A1

METHOD 2

let AC=x

using the sine rule to find a value of C     M1

42=x2+326xcos(152.869)x=1.09    (M1)A1

42=x2+326xcos(27.131)x=6.43    (M1)A1

METHOD 3

let AC=x

using the sine rule to find a value of B and a value of C     M1

obtaining B=132.869, 7.131 and C=27.131, 152.869     A1

(B=2.319, 0.124 and C=0.473, 2.668)

attempting to find a value of x using the cosine rule     (M1)

x=1.09, 6.43    A1A1

 

Note: Award M1A0(M1)A1A0 for one correct value of x

 

[5 marks]

a.

12×4×6.428×sinπ9 and 12×4×1.088×sinπ9     (A1)

(4.39747 and 0.744833)

let D be the difference between the two areas

D=12×4×6.428×sinπ912×4×1.088×sinπ9    (M1)

(D=4.397470.744833)

=3.65 (cm2)    A1

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.7 » The cosine rule.
Show 24 related questions

View options