Date | November 2016 | Marks available | 3 | Reference code | 16N.2.hl.TZ0.7 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Find | Question number | 7 | Adapted from | N/A |
Question
In a triangle \({\text{ABC, AB}} = 4{\text{ cm, BC}} = 3{\text{ cm}}\) and \({\rm{B\hat AC}} = \frac{\pi }{9}\).
Use the cosine rule to find the two possible values for AC.
Find the difference between the areas of the two possible triangles ABC.
Markscheme
METHOD 1
let \({\text{AC}} = x\)
\({3^2} = {x^2} + {4^2} - 8x\cos \frac{\pi }{9}\) M1A1
attempting to solve for \(x\) (M1)
\(x = 1.09,{\text{ }}6.43\) A1A1
METHOD 2
let \({\text{AC}} = x\)
using the sine rule to find a value of \(C\) M1
\({4^2} = {x^2} + {3^2} - 6x\cos (152.869 \ldots ^\circ ) \Rightarrow x = 1.09\) (M1)A1
\({4^2} = {x^2} + {3^2} - 6x\cos (27.131 \ldots ^\circ ) \Rightarrow x = 6.43\) (M1)A1
METHOD 3
let \({\text{AC}} = x\)
using the sine rule to find a value of \(B\) and a value of \(C\) M1
obtaining \(B = 132.869 \ldots ^\circ ,{\text{ }}7.131 \ldots ^\circ \) and \(C = 27.131 \ldots ^\circ ,{\text{ }}152.869 \ldots ^\circ \) A1
\((B = 2.319 \ldots ,{\text{ }}0.124 \ldots \) and \(C = 0.473 \ldots ,{\text{ }}2.668 \ldots )\)
attempting to find a value of \(x\) using the cosine rule (M1)
\(x = 1.09,{\text{ }}6.43\) A1A1
Note: Award M1A0(M1)A1A0 for one correct value of \(x\)
[5 marks]
\(\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi }{9}\) and \(\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi }{9}\) (A1)
(\(4.39747 \ldots \) and \(0.744833 \ldots \))
let \(D\) be the difference between the two areas
\(D = \frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi }{9} - \frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi }{9}\) (M1)
\((D = 4.39747 \ldots - 0.744833 \ldots )\)
\( = 3.65{\text{ (c}}{{\text{m}}^2})\) A1
[3 marks]