Date | None Specimen | Marks available | 3 | Reference code | SPNone.1.hl.TZ0.6 |
Level | HL only | Paper | 1 | Time zone | TZ0 |
Command term | Determine | Question number | 6 | Adapted from | N/A |
Question
In the triangle ABC, AB=2√3 , AC = 9 and BˆAC=150∘ .
Determine BC, giving your answer in the form k√3, k∈Z+ .
[3]
a.
The point D lies on (BC), and (AD) is perpendicular to (BC). Determine AD.
[4]
b.
Markscheme
BC2=12+81+2×2√3×9×√32=147 M1A1
BC=7√3 A1
[3 marks]
a.
area of triangle ABC=12×9×2√3×12 (=9√32) M1A1
therefore 12×AD×7√3=9√32 M1
AD=97 A1
[4 marks]
b.
Examiners report
[N/A]
a.
[N/A]
b.