User interface language: English | Español

Date None Specimen Marks available 3 Reference code SPNone.1.hl.TZ0.6
Level HL only Paper 1 Time zone TZ0
Command term Determine Question number 6 Adapted from N/A

Question

In the triangle ABC, \({\text{AB}} = 2\sqrt 3 \) , AC = 9 and \({\rm{B\hat AC}} = 150^\circ \) .

Determine BC, giving your answer in the form \(k\sqrt 3 \), \(k \in {\mathbb{Z}^ + }\) .

[3]
a.

The point D lies on (BC), and (AD) is perpendicular to (BC). Determine AD.

[4]
b.

Markscheme

\({\text{B}}{{\text{C}}^2} = 12 + 81 + 2 \times 2\sqrt 3  \times 9 \times \frac{{\sqrt 3 }}{2} = 147\)     M1A1

\({\text{BC}} = 7\sqrt 3 \)     A1

[3 marks]

a.

area of triangle \({\text{ABC}} = \frac{1}{2} \times 9 \times 2\sqrt 3  \times \frac{1}{2}{\text{ }}\left( { = \frac{{9\sqrt 3 }}{2}} \right)\)     M1A1

therefore \(\frac{1}{2} \times {\text{AD}} \times 7\sqrt 3  = \frac{{9\sqrt 3 }}{2}\)     M1

\({\text{AD}} = \frac{9}{7}\)     A1

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.7 » The cosine rule.

View options