User interface language: English | Español

Date May 2017 Marks available 3 Reference code 17M.2.hl.TZ1.10
Level HL only Paper 2 Time zone TZ1
Command term Calculate Question number 10 Adapted from N/A

Question

In triangle \({\text{PQR, PR}} = 12{\text{ cm, QR}} = p{\text{ cm, PQ}} = r{\text{ cm}}\) and \({\rm{Q\hat PR}} = 30^\circ \).

Consider the possible triangles with \({\text{QR}} = 8{\text{ cm}}\).

Consider the case where \(p\), the length of QR is not fixed at 8 cm.

Use the cosine rule to show that \({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\).

[2]
a.

Calculate the two corresponding values of PQ.

[3]
b.

Hence, find the area of the smaller triangle.

[3]
c.

Determine the range of values of \(p\) for which it is possible to form two triangles.

[7]
d.

Markscheme

\({p^2} = {12^2} + {r^2} - 2 \times 12 \times r \times \cos (30^\circ )\)     M1A1

\({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\)     AG

[2 marks]

a.

EITHER

\({r^2} - 12\sqrt 3 r + 80 = 0\)     (M1)

OR

using the sine rule     (M1)

THEN

\({\text{PQ}} = 5.10{\text{ }}({\text{cm}})\) or     A1

\({\text{PQ}} = 15.7{\text{ }}({\text{cm}})\)     A1

[3 marks]

b.

\({\text{area}} = \frac{1}{2} \times 12 \times 5.1008 \ldots \times \sin (30^\circ )\)     M1A1

\( = 15.3{\text{ }}({\text{c}}{{\text{m}}^2})\)     A1

[3 marks]

c.

METHOD 1

EITHER

\({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\)

discriminant \( = {\left( {12\sqrt 3 } \right)^2} - 4 \times (144 - {p^2})\)     M1

\( = 4({p^2} - 36)\)     A1

\(({p^2} - 36) > 0\)     M1

\(p > 6\)     A1

OR

construction of a right angle triangle     (M1)

\(12\sin 30^\circ = 6\)     M1(A1)

hence for two triangles \(p > 6\)     R1

THEN

\(p < 12\)     A1

\(144 - {p^2} > 0\) to ensure two positive solutions or valid geometric argument     R1

\(\therefore 6 < p < 12\)     A1

METHOD 2

diagram showing two triangles     (M1)

\(12\sin 30^\circ = 6\)     M1A1

one right angled triangle when \(p = 6\)     (A1)

\(\therefore p > 6\) for two triangles     R1

\(p < 12\) for two triangles     A1

\(6 < p < 12\)     A1

[7 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.7
Show 36 related questions

View options