Processing math: 100%

User interface language: English | Español

Date May 2015 Marks available 4 Reference code 15M.1.hl.TZ2.6
Level HL only Paper 1 Time zone TZ2
Command term Show that Question number 6 Adapted from N/A

Question

In triangle ABC, BC=3 cm, AˆBC=θ and BˆCA=π3.

Show that length AB=33cosθ+sinθ.

[4]
a.

Given that AB has a minimum value, determine the value of θ for which this occurs.

[4]
b.

Markscheme

any attempt to use sine rule     M1

ABsinπ3=3sin(2π3θ)     A1

=3sin2π3cosθcos2π3sinθ     A1

 

Note:     Condone use of degrees.

 

=332cosθ+12sinθ     A1

AB32=332cosθ+12sinθ

AB=33cosθ+sinθ     AG

[4 marks]

a.

METHOD 1

(AB)=3(3sinθ+cosθ)(3cosθ+sinθ)2     M1A1

setting (AB)=0     M1

tanθ=13

θ=π6     A1

METHOD 2

AB=3sinπ3sin(2π3θ)

AB minimum when sin(2π3θ) is maximum     M1

sin(2π3θ)=1     (A1)

2π3θ=π2     M1

θ=π6     A1

METHOD 3

shortest distance from B to AC is perpendicular to AC     R1

θ=π2π3=π6     M1A2

[4 marks]

Total [8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 3 - Core: Circular functions and trigonometry » 3.7 » The sine rule including the ambiguous case.

View options