Date | May 2015 | Marks available | 4 | Reference code | 15M.1.hl.TZ2.6 |
Level | HL only | Paper | 1 | Time zone | TZ2 |
Command term | Show that | Question number | 6 | Adapted from | N/A |
Question
In triangle ABC, BC=√3 cm, AˆBC=θ and BˆCA=π3.
Show that length AB=3√3cosθ+sinθ.
Given that AB has a minimum value, determine the value of θ for which this occurs.
Markscheme
any attempt to use sine rule M1
ABsinπ3=√3sin(2π3−θ) A1
=√3sin2π3cosθ−cos2π3sinθ A1
Note: Condone use of degrees.
=√3√32cosθ+12sinθ A1
AB√32=√3√32cosθ+12sinθ
∴AB=3√3cosθ+sinθ AG
[4 marks]
METHOD 1
(AB)′=−3(−√3sinθ+cosθ)(√3cosθ+sinθ)2 M1A1
setting (AB)′=0 M1
tanθ=1√3
θ=π6 A1
METHOD 2
AB=√3sinπ3sin(2π3−θ)
AB minimum when sin(2π3−θ) is maximum M1
sin(2π3−θ)=1 (A1)
2π3−θ=π2 M1
θ=π6 A1
METHOD 3
shortest distance from B to AC is perpendicular to AC R1
θ=π2−π3=π6 M1A2
[4 marks]
Total [8 marks]