Date | May 2017 | Marks available | 2 | Reference code | 17M.2.hl.TZ1.10 |
Level | HL only | Paper | 2 | Time zone | TZ1 |
Command term | Show that | Question number | 10 | Adapted from | N/A |
Question
In triangle \({\text{PQR, PR}} = 12{\text{ cm, QR}} = p{\text{ cm, PQ}} = r{\text{ cm}}\) and \({\rm{Q\hat PR}} = 30^\circ \).
Consider the possible triangles with \({\text{QR}} = 8{\text{ cm}}\).
Consider the case where \(p\), the length of QR is not fixed at 8 cm.
Use the cosine rule to show that \({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\).
Calculate the two corresponding values of PQ.
Hence, find the area of the smaller triangle.
Determine the range of values of \(p\) for which it is possible to form two triangles.
Markscheme
\({p^2} = {12^2} + {r^2} - 2 \times 12 \times r \times \cos (30^\circ )\) M1A1
\({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\) AG
[2 marks]
EITHER
\({r^2} - 12\sqrt 3 r + 80 = 0\) (M1)
OR
using the sine rule (M1)
THEN
\({\text{PQ}} = 5.10{\text{ }}({\text{cm}})\) or A1
\({\text{PQ}} = 15.7{\text{ }}({\text{cm}})\) A1
[3 marks]
\({\text{area}} = \frac{1}{2} \times 12 \times 5.1008 \ldots \times \sin (30^\circ )\) M1A1
\( = 15.3{\text{ }}({\text{c}}{{\text{m}}^2})\) A1
[3 marks]
METHOD 1
EITHER
\({r^2} - 12\sqrt 3 r + 144 - {p^2} = 0\)
discriminant \( = {\left( {12\sqrt 3 } \right)^2} - 4 \times (144 - {p^2})\) M1
\( = 4({p^2} - 36)\) A1
\(({p^2} - 36) > 0\) M1
\(p > 6\) A1
OR
construction of a right angle triangle (M1)
\(12\sin 30^\circ = 6\) M1(A1)
hence for two triangles \(p > 6\) R1
THEN
\(p < 12\) A1
\(144 - {p^2} > 0\) to ensure two positive solutions or valid geometric argument R1
\(\therefore 6 < p < 12\) A1
METHOD 2
diagram showing two triangles (M1)
\(12\sin 30^\circ = 6\) M1A1
one right angled triangle when \(p = 6\) (A1)
\(\therefore p > 6\) for two triangles R1
\(p < 12\) for two triangles A1
\(6 < p < 12\) A1
[7 marks]