User interface language: English | Español

Date May 2017 Marks available 2 Reference code 17M.2.hl.TZ0.6
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 6 Adapted from N/A

Question

M17/5/FURMA/HP2/ENG/TZ0/06.a

Figure 1 shows a tangent [PQ] at the point Q of a circle and a line [PS] meeting the circle at the points R , S and passing through the centre O of the circle.

M17/5/FURMA/HP2/ENG/TZ0/06.b

Figure 2 shows a triangle ABC inscribed in a circle. The tangents at the points A , B , C meet the opposite sides of the triangle externally at the points D , E , F respectively.

Show that \({\text{P}}{{\text{Q}}^2} = {\text{PR}} \times {\text{PS}}\).

[2]
a.i.

State briefly how this result can be generalized to give the tangent-secant theorem.

[2]
a.ii.

Show that \(\frac{{{\text{A}}{{\text{D}}^2}}}{{{\text{B}}{{\text{D}}^2}}} = \frac{{{\text{CD}}}}{{{\text{BD}}}}\).

[2]
b.i.

By considering a pair of similar triangles, show that

\(\frac{{{\text{AD}}}}{{{\text{BD}}}} = \frac{{{\text{AC}}}}{{{\text{AB}}}}\) and hence that \(\frac{{{\text{CD}}}}{{{\text{BD}}}} = \frac{{{\text{A}}{{\text{C}}^2}}}{{{\text{A}}{{\text{B}}^2}}}\).

[2]
b.ii.

By writing down and using two further similar expressions, show that the points D, E, F are collinear.

[6]
b.iii.

Markscheme

let \(r = \) radius of circle. Consider

\({\text{PR}} \times {\text{PS}} = ({\text{PO}} - r)({\text{PO}} + r)\)     M1

\( = {\text{P}}{{\text{O}}^2} - {\text{O}}{{\text{Q}}^2}\)     A1

\( = {\text{P}}{{\text{Q}}^2}\) because POQ is a right angled triangle     R1

[2 marks]

a.i.

the result is true even if PS does not pass through O     A1

[2 marks]

a.ii.

using the tangent-secant theorem,     M1

\({\text{A}}{{\text{D}}^2} = {\text{BD}} \times {\text{CD}}\)     A1

so \(\frac{{{\text{A}}{{\text{D}}^2}}}{{{\text{B}}{{\text{D}}^2}}} = \frac{{{\text{CD}}}}{{{\text{BD}}}} \ldots {\text{ (1)}}\)     AG

[??? marks]

b.i.

consider the triangles CAD and ABD. They are similar because     M1

\({\rm{D\hat AB}} = {\rm{A\hat CD}}\), angle \({\rm{\hat D}}\) is common therefore the third angles must be equal     A1

 

Note:     Beware of the assumption that AC is a diameter of the circle.

 

therefore

\(\frac{{{\text{AD}}}}{{{\text{BD}}}} = \frac{{{\text{AC}}}}{{{\text{AB}}}} \ldots {\text{ (2)}}\)     AG

it follows from (1) and (2) that

\(\frac{{{\text{CD}}}}{{{\text{BD}}}} = \frac{{{\text{A}}{{\text{C}}^2}}}{{{\text{A}}{{\text{B}}^2}}}\)     AG

[??? marks]

b.ii.

two similar expressions are

\(\frac{{{\text{AE}}}}{{{\text{CE}}}} = \frac{{{\text{B}}{{\text{A}}^2}}}{{{\text{B}}{{\text{C}}^2}}}\)     M1A1

\(\frac{{{\text{BF}}}}{{{\text{AF}}}} = \frac{{{\text{C}}{{\text{B}}^2}}}{{{\text{C}}{{\text{A}}^2}}}\)     A1

multiplying the three expressions,

\(\frac{{{\text{CD}}}}{{{\text{BD}}}} \times \frac{{{\text{AE}}}}{{{\text{CE}}}} \times \frac{{{\text{BF}}}}{{{\text{AF}}}} = \frac{{{\text{A}}{{\text{C}}^2}}}{{{\text{A}}{{\text{B}}^2}}} \times \frac{{{\text{B}}{{\text{A}}^2}}}{{{\text{B}}{{\text{C}}^2}}} \times \frac{{{\text{C}}{{\text{B}}^2}}}{{{\text{C}}{{\text{A}}^2}}}\)     M1

\(\frac{{{\text{CD}}}}{{{\text{BD}}}} \times \frac{{{\text{AE}}}}{{{\text{CE}}}} \times \frac{{{\text{BF}}}}{{{\text{AF}}}} = 1\)     A1

it follows from the converse of Menelaus’ theorem (ignoring signs)     R1

that D, E, F are collinear     AG

[??? marks]

b.iii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.

Syllabus sections

Topic 2 - Geometry » 2.4

View options