Processing math: 100%

User interface language: English | Español

Date May 2008 Marks available 7 Reference code 08M.2.hl.TZ0.3
Level HL only Paper 2 Time zone TZ0
Command term Show that Question number 3 Adapted from N/A

Question

The diagram shows the line l meeting the sides of the triangle ABC at the points D, E and F. The perpendiculars to l from A, B and C meet l at G, H and I.

  (i)     State why AFFB=AGHB .

  (ii)     Hence prove Menelaus’ theorem for the triangle ABC.

  (iii)     State and prove the converse of Menelaus’ theorem.

[13]
a.

A straight line meets the sides (PQ), (QR), (RS), (SP) of a quadrilateral PQRS at the points U, V, W, X respectively. Use Menelaus’ theorem to show thatPUUQ×QVVR×RWWS×SXXP=1.

[7]
b.

Markscheme

(i)     Because the triangles AGF and BHF are similar.     R1

 

 

(ii)     It follows (by cyclic rotation or considering similar triangles) that

BDDC=BHIC     A1

and CEEA=CIGA     A1

Multiplying these three results gives Menelaus’ Theorem, i.e.

AFFB×BDDC×CEEA=AGHB×BHIC×CIGA     M1A1

=AGGA×BHHB×CIIC=1     M1A1

 

 

(iii)     The converse states that if D, E, F are points on the sides (BC), (CA), (AB) of a triangle such that

AFFB×BDDC×CEEA=1

then D, E, F are collinear.     A1

To prove this result, let D, E, F′ be collinear points on the three sides so that, using the above theorem,     M1

AFFB×BDDC×CEEA=1    A1

Since AFFB×BDDC×CEEA=1     M1

AFFB=AFFB     A1

and F=F which proves the converse.     R1

 

 

[13 marks]

a.

Draw the diagonal PR and let it cut the line at the point Y.     M1

Apply Menelaus’ Theorem to the triangle PQR. Then,

PUUQ×QVVR×RYYP=1     M1A1

Now apply the theorem to triangle PRS.

PYYR×RWWS×SXXP=1     A1

PUUQ×QVVR×RYYP×PYYR×RWWS×SXXP=1×1     M1

PUUQ×QVVR×RWWS×SXXP×PYYP×RYYR=1    A1

PUUQ×QVVR×RWWS×SXXP×(1)×(1)=1     (M1)

PUUQ×QVVR×RWWS×SXXP=1     AG

[7 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Geometry » 2.4 » Angle bisector theorem; Apollonius’ circle theorem, Menelaus’ theorem; Ceva’s theorem; Ptolemy’s theorem for cyclic quadrilaterals.

View options