Loading [MathJax]/jax/output/CommonHTML/jax.js

User interface language: English | Español

Date None Specimen Marks available 8 Reference code SPNone.1.hl.TZ0.15
Level HL only Paper 1 Time zone TZ0
Command term Prove that Question number 15 Adapted from N/A

Question

Prove the internal angle bisector theorem, namely that the internal bisector of an angle of a triangle divides the side opposite the angle into segments proportional to the sides adjacent to the angle.

[6]
a.

The bisector of the exterior angle ˆA of the triangle ABC meets (BC) at P. The bisector of the interior angle ˆB meets [AC] at Q. Given that (PQ) meets [AB] at R, use Menelaus’ theorem to prove that (CR) bisects the angle AˆCB .

[8]
b.

Markscheme

EITHER


let [AD] bisect A, draw a line through C parallel to (AD) meeting (AB) at E     M1

then BˆAD=AˆEC and DˆAC=AˆCE     A1

since BˆAD=DˆAC it follows that AˆEC=AˆCE     A1

triangle AEC is therefore isosceles and AE=AC     A1

since triangles BAD and BEC are similar

BDDC=ABAE=ABAC     M1A1

OR


ABsinβ=BDsinα     M1A1

ACsin(180β)=DCsinα     M1A1

sinβ=sin(180β)     R1

ABBD=ACDC

BDDC=ABAC     A1

[6 marks]

a.


using the angle bisector theorem,     M1

AQQC=ABBC and BPPC=ABBC     A1

using Menelaus’ theorem with (PR) as transversal to triangle ABC     M1

BRAR×AQQC×PCBP=()1     A1

substituting the above results,     M1

BRAR×ABBC×ACAB=()1     A1

giving

BRAR=BCAC     A1

[CR] therefore bisects angle C by (the converse to) the angle bisector theorem     R1AG

[8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Geometry » 2.4 » Angle bisector theorem; Apollonius’ circle theorem, Menelaus’ theorem; Ceva’s theorem; Ptolemy’s theorem for cyclic quadrilaterals.

View options