User interface language: English | Español

Date None Specimen Marks available 8 Reference code SPNone.1.hl.TZ0.15
Level HL only Paper 1 Time zone TZ0
Command term Prove that Question number 15 Adapted from N/A

Question

Prove the internal angle bisector theorem, namely that the internal bisector of an angle of a triangle divides the side opposite the angle into segments proportional to the sides adjacent to the angle.

[6]
a.

The bisector of the exterior angle \(\widehat A\) of the triangle ABC meets (BC) at P. The bisector of the interior angle \(\widehat B\) meets [AC] at Q. Given that (PQ) meets [AB] at R, use Menelaus’ theorem to prove that (CR) bisects the angle \({\rm{A}}\widehat {\rm{C}}{\rm{B}}\) .

[8]
b.

Markscheme

EITHER


let [AD] bisect A, draw a line through C parallel to (AD) meeting (AB) at E     M1

then \({\rm{B}}\widehat {\rm{A}}{\rm{D}} = {\rm{A}}\widehat {\rm{E}}{\rm{C}}\) and \({\rm{D}}\widehat {\rm{A}}{\rm{C}} = {\rm{A}}\widehat {\rm{C}}{\rm{E}}\)     A1

since \({\rm{B}}\widehat {\rm{A}}{\rm{D}} = {\rm{D}}\widehat {\rm{A}}{\rm{C}}\) it follows that \({\rm{A}}\widehat {\rm{E}}{\rm{C}} = {\rm{A}}\widehat {\rm{C}}{\rm{E}}\)     A1

triangle AEC is therefore isosceles and \({\rm{AE}} = {\rm{AC}}\)     A1

since triangles BAD and BEC are similar

\(\frac{{{\rm{BD}}}}{{{\rm{DC}}}} = \frac{{{\rm{AB}}}}{{{\rm{AE}}}} = \frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)     M1A1

OR


\(\frac{{{\rm{AB}}}}{{\sin \beta }} = \frac{{{\rm{BD}}}}{{\sin \alpha }}\)     M1A1

\(\frac{{{\rm{AC}}}}{{\sin (180 - \beta )}} = \frac{{{\rm{DC}}}}{{\sin \alpha }}\)     M1A1

\(\sin \beta  = \sin (180 - \beta )\)     R1

\( \Rightarrow \frac{{{\rm{AB}}}}{{{\rm{BD}}}} = \frac{{{\rm{AC}}}}{{{\rm{DC}}}}\)

\( \Rightarrow \frac{{{\rm{BD}}}}{{{\rm{DC}}}} = \frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)     A1

[6 marks]

a.


using the angle bisector theorem,     M1

\(\frac{{{\rm{AQ}}}}{{{\rm{QC}}}} = \frac{{{\rm{AB}}}}{{{\rm{BC}}}}\) and \(\frac{{{\rm{BP}}}}{{{\rm{PC}}}} = \frac{{{\rm{AB}}}}{{{\rm{BC}}}}\)     A1

using Menelaus’ theorem with (PR) as transversal to triangle ABC     M1

\(\frac{{{\rm{BR}}}}{{{\rm{AR}}}} \times \frac{{{\rm{AQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{PC}}}}{{{\rm{BP}}}} = ( - )1\)     A1

substituting the above results,     M1

\(\frac{{{\rm{BR}}}}{{{\rm{AR}}}} \times \frac{{{\rm{AB}}}}{{{\rm{BC}}}} \times \frac{{{\rm{AC}}}}{{{\rm{AB}}}} = ( - )1\)     A1

giving

\(\frac{{{\rm{BR}}}}{{{\rm{AR}}}} = \frac{{{\rm{BC}}}}{{{\rm{AC}}}}\)     A1

[CR] therefore bisects angle C by (the converse to) the angle bisector theorem     R1AG

[8 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2 - Geometry » 2.4 » Angle bisector theorem; Apollonius’ circle theorem, Menelaus’ theorem; Ceva’s theorem; Ptolemy’s theorem for cyclic quadrilaterals.

View options