Date | May 2014 | Marks available | 14 | Reference code | 14M.2.hl.TZ0.9 |
Level | HL only | Paper | 2 | Time zone | TZ0 |
Command term | Show that | Question number | 9 | Adapted from | N/A |
Question
The diagram above shows a point \({\text{O}}\) inside a triangle \({\text{ABC}}\). The lines \({\text{(AO), (BO), (CO)}}\) meet the lines \({\text{(BC), (CA), (AB)}}\) at the points \({\text{D, E, F}}\) respectively. The lines \({\text{(EF), (BC)}}\) meet at the point \({\text{G}}\).
(a) Show that, with the usual convention for the signs of lengths in a triangle, \(\frac{{{\text{BD}}}}{{{\text{DC}}}} = - \frac{{{\text{BG}}}}{{{\text{GC}}}}\).
(b) The lines \({\text{(FD), (CA)}}\) meet at the point \({\text{H}}\) and the lines \({\text{(DE), (AB)}}\) meet at the point \({\text{I}}\). Show that the points \({\text{G, H, I}}\) are collinear.
Markscheme
(a) applying Ceva’s theorem to triangle \({\text{ABC}}\),
\(\frac{{{\text{CD}}}}{{{\text{DB}}}} \times \frac{{{\text{AE}}}}{{{\text{EC}}}} \times \frac{{{\text{BF}}}}{{{\text{FA}}}} = 1\) M1A1
applying Menelaus’ theorem to triangle \({\text{ABC}}\) with transversal \({\text{(GFE)}}\),
\(\frac{{{\text{BG}}}}{{{\text{GC}}}} \times \frac{{{\text{CE}}}}{{{\text{EA}}}} \times \frac{{{\text{AF}}}}{{{\text{FB}}}} - = 1\) M1A1
multiplying the two equations, M1
\(\frac{{{\text{CD}}}}{{{\text{DB}}}} \times \frac{{{\text{BG}}}}{{{\text{GC}}}} = - 1\) A1
so that \(\frac{{{\text{BD}}}}{{{\text{DC}}}} = - \frac{{{\text{BG}}}}{{{\text{GC}}}}\) AG
[6 marks]
(b) similarly
\(\frac{{{\text{CE}}}}{{{\text{EA}}}} = - \frac{{{\text{CH}}}}{{{\text{HA}}}}\) M1A1
and \(\frac{{{\text{AF}}}}{{{\text{FB}}}} = - \frac{{{\text{AI}}}}{{{\text{IB}}}}\) A1
multiplying the three results,
\(\frac{{{\text{BD}}}}{{{\text{DC}}}} \times \frac{{{\text{CE}}}}{{{\text{EA}}}} \times \frac{{{\text{AF}}}}{{{\text{FB}}}} = - \frac{{{\text{BG}}}}{{{\text{GC}}}} \times \frac{{{\text{CH}}}}{{{\text{HA}}}} \times \frac{{{\text{AI}}}}{{{\text{IB}}}}\) M1A1
by Ceva’s theorem, as shown previously, the left hand side is equal to \(1\), therefore so is the right hand side R1
that is \(\frac{{{\text{BG}}}}{{{\text{GC}}}} \times \frac{{{\text{CH}}}}{{{\text{HA}}}} \times \frac{{{\text{AI}}}}{{{\text{IB}}}} = - 1\) A1
it follows from the converse to Menelaus’ theorem that \({\text{G, H, I}}\) are collinear R1
[8 marks]