User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.AHL.TZ1.H_9
Level Additional Higher Level Paper Paper 1 Time zone Time zone 1
Command term Sketch Question number H_9 Adapted from N/A

Question

Let  f ( x ) = 2 3 x 5 2 x 3 , x R , x 0 .

The graph of  y = f ( x ) has a local maximum at A. Find the coordinates of A.

[5]
a.

Show that there is exactly one point of inflexion, B, on the graph of y = f ( x ) .

[5]
b.i.

The coordinates of B can be expressed in the form B ( 2 a , b × 2 3 a ) where a, b Q . Find the value of a and the value of b.

[3]
b.ii.

Sketch the graph of  y = f ( x ) showing clearly the position of the points A and B.

[4]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to differentiate      (M1)

f ( x ) = 3 x 4 3 x      A1

Note: Award M1 for using quotient or product rule award A1 if correct derivative seen even in unsimplified form, for example  f ( x ) = 15 x 4 × 2 x 3 6 x 2 ( 2 3 x 5 ) ( 2 x 3 ) 2 .

3 x 4 3 x = 0      M1

x 5 = 1 x = 1      A1

A ( 1 , 5 2 )      A1

[5 marks]

a.

f ( x ) = 0      M1

f ( x ) = 12 x 5 3 ( = 0 )      A1

Note: Award A1 for correct derivative seen even if not simplified.

x = 4 5 ( = 2 2 5 )      A1

hence (at most) one point of inflexion      R1

Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.

f ( x )  changes sign at  x = 4 5 ( = 2 2 5 )       R1

so exactly one point of inflexion

[5 marks]

b.i.

x = 4 5 = 2 2 5 ( a = 2 5 )       A1

f ( 2 2 5 ) = 2 3 × 2 2 2 × 2 6 5 = 5 × 2 6 5 ( b = 5 )      (M1)A1

Note: Award M1 for the substitution of their value for  x into  f ( x ) .

[3 marks]

b.ii.

A1A1A1A1

A1 for shape for x < 0
A1 for shape for x > 0
A1 for maximum at A
A1 for POI at B.

Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 2—Functions » SL 2.2—Functions, notation domain, range and inverse as reflection
Show 123 related questions
Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Topic 5—Calculus » SL 5.6—Stationary points, local max and min
Topic 5—Calculus » SL 5.7—Optimisation
Topic 2—Functions
Topic 5—Calculus

View options