User interface language: English | Español

Date May 2018 Marks available 4 Reference code 18M.1.AHL.TZ2.H_2
Level Additional Higher Level Paper Paper 1 Time zone Time zone 2
Command term Solve Question number H_2 Adapted from N/A

Question

Sketch the graphs of  y = x 2 + 1 and  y = | x 2 | on the following axes.

[3]
a.

Solve the equation  x 2 + 1 = | x 2 | .

[4]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

straight line graph with correct axis intercepts      A1

modulus graph: V shape in upper half plane      A1

modulus graph having correct vertex and y-intercept      A1

[3 marks]

a.

METHOD 1

attempt to solve  x 2 + 1 = x 2      (M1)

x = 6       A1

Note: Accept x = 6 using the graph.

attempt to solve (algebraically) x 2 + 1 = 2 x      M1

x = 2 3      A1

[4 marks]

 

 

METHOD 2

( x 2 + 1 ) 2 = ( x 2 ) 2       M1

x 2 4 + x + 1 = x 2 4 x + 4

0 = 3 x 2 4 5 x + 3

3 x 2 20 x + 12 = 0

attempt to factorise (or equivalent)       M1

( 3 x 2 ) ( x 6 ) = 0

x = 2 3      A1

x = 6       A1

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2—Functions » SL 2.2—Functions, notation domain, range and inverse as reflection
Show 123 related questions
Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Topic 2—Functions

View options