User interface language: English | Español

Date May 2017 Marks available 1 Reference code 17M.1.AHL.TZ1.H_11
Level Additional Higher Level Paper Paper 1 Time zone Time zone 1
Command term Question number H_11 Adapted from N/A

Question

Consider the function f ( x ) = 1 x 2 + 3 x + 2 ,   x R ,   x 2 ,   x 1 .

Express x 2 + 3 x + 2 in the form ( x + h ) 2 + k .

[1]
a.i.

Factorize x 2 + 3 x + 2 .

[1]
a.ii.

Sketch the graph of f ( x ) , indicating on it the equations of the asymptotes, the coordinates of the y -intercept and the local maximum.

[5]
b.

Show that 1 x + 1 1 x + 2 = 1 x 2 + 3 x + 2 .

[1]
c.

Hence find the value of p if 0 1 f ( x ) d x = ln ( p ) .

[4]
d.

Sketch the graph of y = f ( | x | ) .

[2]
e.

Determine the area of the region enclosed between the graph of y = f ( | x | ) , the x -axis and the lines with equations x = 1 and x = 1 .

[3]
f.

Markscheme

x 2 + 3 x + 2 = ( x + 3 2 ) 2 1 4      A1

[1 mark]

a.i.

x 2 + 3 x + 2 = ( x + 2 ) ( x + 1 )      A1

[1 mark]

a.ii.

M17/5/MATHL/HP1/ENG/TZ1/B11.b/M

A1 for the shape

A1 for the equation y = 0

A1 for asymptotes x = 2 and x = 1

A1 for coordinates ( 3 2 ,   4 )

A1 y -intercept ( 0 ,   1 2 )

[5 marks]

b.

1 x + 1 1 x + 2 = ( x + 2 ) ( x + 1 ) ( x + 1 ) ( x + 2 )      M1

= 1 x 2 + 3 x + 2      AG

[1 mark]

c.

0 1 1 x + 1 1 x + 2 d x

= [ ln ( x + 1 ) ln ( x + 2 ) ] 0 1      A1

= ln 2 ln 3 ln 1 + ln 2      M1

= ln ( 4 3 )      M1A1

p = 4 3

[4 marks]

d.

M17/5/MATHL/HP1/ENG/TZ1/B11.e/M

symmetry about the y -axis     M1

correct shape     A1

 

Note:     Allow FT from part (b).

 

[2 marks]

e.

2 0 1 f ( x ) d x      (M1)(A1)

= 2 ln ( 4 3 )      A1

 

Note:     Do not award FT from part (e).

 

[3 marks]

f.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.
[N/A]
f.

Syllabus sections

Topic 2—Functions » SL 2.2—Functions, notation domain, range and inverse as reflection
Show 123 related questions
Topic 2—Functions » SL 2.4—Key features of graphs, intersections using technology
Topic 5—Calculus » AHL 5.12—Areas under a curve onto x or y axis. Volumes of revolution about x and y
Topic 2—Functions
Topic 5—Calculus

View options