Processing math: 100%

User interface language: English | Español

Date May Example question Marks available 4 Reference code EXM.2.AHL.TZ0.23
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Show that and Hence Question number 23 Adapted from N/A

Question

Let =(3143).

Let A2 + m+ nI = O where m, nZ and = (0000).

Find the values of λ for which the matrix (AλI) is singular.

[5]
a.

Find the value of m and of n.

[5]
b.i.

Hence show that I = 15A (6IA).

[4]
b.ii.

Use the result from part (b) (ii) to explain why A is non-singular.

[3]
b.iii.

Use the values from part (b) (i) to express A4 in the form pA+ qI where p, qZ.

[5]
c.

Markscheme

A − λI = (3λ143λ)           A1

If A − λI is singular then det (A − λI) = 0           (R1)

det (A − λI=(3λ)24(=λ26λ+5)           (A1)

Attempting to solve (3λ)24=0 or equivalent for λ         M1

λ = 1, 5      A1  N2

Note: Candidates need both values of λ for the final A1.

[5 marks]

a.

(3143)2+m(3143)+n(1001)=(0000)           A1

(3143)2=(1362413)           (A1)

Forming any two independent equations           M1

(eg 6+m=013+3m+n=0 or equivalent)

Note: Accept equations in matrix form.

Solving these two equations      (M1)

m=6 and n=5      A1  N2

[5 marks]

b.i.

A2 − 6A + 5I = O        (M1)

5I = 6A − A2         A1

= A(6I − A)          A1A1

Note: Award A1 for A and A1 for (6I − A).

I = 15A(6I − A)     AG  N0

Special Case: Award M1A0A0A0 only for candidates following alternative methods.

[5 marks]

b.ii.

METHOD 1

I = 15A(6I − A) = A × 15(6I − A)         M1

Hence by definition 15(6I − A) is the inverse of A.     R1

Hence A−1 exists and so A is non-singular       R1   N0

 

METHOD 2

As det I = 1 (≠ 0), then          R1

det 15A(6I − A) = 15 det A × det (6I − A) (≠ 0)      M1

⇒ det A ≠ 0 and so A is non-singular.         R1   N0

 

[3 marks]

b.iii.

METHOD 1

A2 = 6A − 5I              (A1)

A4 = (6A − 5I)2              M1

     = 36A2 − 60AI + 25I2              A1

     = 36(6A − 5I) − 60A + 25I              M1

     = 156A − 155I (p = 156, q = −155)              A1  N0

 

METHOD 2

A2 = 6A − 5I              (A1)

A3 = 6A2 − 5A where A2 = 6A − 5I              M1

     = 31A − 30I              A1

A4 = 31A2 − 30A where A2 = 6A − 5I              M1

     = 156A − 155I (p = 156, q = −155)              A1  N0

 

Note: Do not accept methods that evaluate A4 directly from A.

 

[5 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra » AHL 1.15—Eigenvalues and eigenvectors
Topic 1—Number and algebra

View options