User interface language: English | Español

Date May Example question Marks available 1 Reference code EXM.1.AHL.TZ0.30
Level Additional Higher Level Paper Paper 1 Time zone Time zone 0
Command term Find Question number 30 Adapted from N/A

Question

Matrices A, B and C are defined as

A = (151313937)151313937B = (121310031)121310031C = (804)804.

Given that AB = (a000a000a)a000a000a, find aa.

[1]
a.

Hence, or otherwise, find A–1.

[2]
b.

Find the matrix X, such that AX = C.

[2]
c.

Markscheme

a=16a=16                    A1

[1 mark]

a.

A–1116(121310031)116121310031                  (M1)A1

[2 marks]

b.

AX = C ⇒ X = A–1C                 (M1)

=116(121310031)(804)=116121310031804

=116(12244)(=(0.751.50.25))=11612244=0.751.50.25        A1

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options