User interface language: English | Español

Date May Example question Marks available 2 Reference code EXM.2.AHL.TZ0.21
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 21 Adapted from N/A

Question

Let A(111011001)111011001 and B = (100110111)100110111.

Given that X = B A–1 and Y = B–1 – A,

You are told that An=(1nn(n+1)201n001)An=⎜ ⎜1nn(n+1)201n001⎟ ⎟, for nZ+.

Given that (An)1=(1xy01x001), for nZ+,

find X and Y.

[2]
a.i.

does X–1 + Y–1 have an inverse? Justify your conclusion.

[3]
a.ii.

find x and y in terms of n.

[5]
b.i.

and hence find an expression for An+(An)1.

[1]
b.ii.

Markscheme

X = BA–1 = (100110111)(110011001)=(010101110)        A1

Y = B–1  A (100110111)(111011001)=(011101010)        A1

 

[2 marks]

a.i.

X–1 + Y–1 = (010101010)         (A1)

X–1 + Y–1 has no inverse           A1

as det(X–1 + Y–1) = 0        R1

[3 marks]

a.ii.

An(An)1=I(1nn(n+1)201n001)(1xy01x001)=(100010001)       M1

(1x+ny+nx+n(n+1)201x+n001)=(100010001)           A1

solve simultaneous equations to obtain

x+n=0 and y+nx+n(n+1)2=0        M1

x=n and y=n(n1)2          A1A1N2

[5 marks]

b.i.

An+(An)1=(1nn(n+1)201n001)+(1nn(n1)201n001)=(20n2020002)          A1

 

[1 mark]

b.ii.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options