User interface language: English | Español

Date May Example question Marks available 3 Reference code EXM.2.AHL.TZ0.7
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 7 Adapted from N/A

Question

Let SSnn be the sum of the first nn terms of the arithmetic series 2 + 4 + 6 + ….

Let M = (1201)(1201).

It may now be assumed that Mnn = (12n01)(12n01), for nn ≥ 4. The sum Tnn is defined by

Tnn = M1 + M2 + M3 + ... + Mnn.

Find SS4.

[1]
a.i.

Find SS100.

[3]
a.ii.

Find M2.

[2]
b.i.

Show that M3 = (1601)(1601).

[3]
b.ii.

Write down M4.

[1]
c.i.

Find T4.

[3]
c.ii.

Using your results from part (a) (ii), find T100.

[3]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

SS4 = 20       A1  N1

[1 mark]

a.i.

uu1 = 2, dd = 2      (A1)

Attempting to use formula for SSnn       M1

SS100 = 10100    A1     N2

[3 marks]

a.ii.

M2 = (1401)(1401)    A2     N2

[2 marks]

b.i.

For writing M3 as M2 × M or M × M2  (or(1201)(1401))(or(1201)(1401))     M1

M3 = (1+04+20+00+1)(1+04+20+00+1)      A2

M3 = (1601)(1601)    AG     N0

[3 marks]

b.ii.

M4 = (1801)(1801)    A1     N1

[1 mark]

c.i.

T4 = (1201)+(1401)+(1601)+(1801)(1201)+(1401)+(1601)+(1801)    (M1)

(42004)(42004)      A1A1    N3

[3 marks]

c.ii.

T100 = (1201)+(1401)++(120001)(1201)+(1401)++(120001)    (M1)

=(100101000100)=(100101000100)     A1A1    N3

[3 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options