User interface language: English | Español

Date May Example question Marks available 3 Reference code EXM.2.AHL.TZ0.7
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Show that Question number 7 Adapted from N/A

Question

Let S n  be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ….

Let M = ( 1 2 0 1 ) .

It may now be assumed that M n  = ( 1 2 n 0 1 ) , for n ≥ 4. The sum T n  is defined by

T n = M1 + M2 + M3 + ... + M n .

Find S 4.

[1]
a.i.

Find S 100.

[3]
a.ii.

Find M2.

[2]
b.i.

Show that M3 = ( 1 6 0 1 ) .

[3]
b.ii.

Write down M4.

[1]
c.i.

Find T4.

[3]
c.ii.

Using your results from part (a) (ii), find T100.

[3]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

S 4 = 20       A1  N1

[1 mark]

a.i.

u 1 = 2, d  = 2      (A1)

Attempting to use formula for S n        M1

S 100 = 10100    A1     N2

[3 marks]

a.ii.

M2 = ( 1 4 0 1 )     A2     N2

[2 marks]

b.i.

For writing M3 as M2 × M or M × M2  ( or ( 1 2 0 1 ) ( 1 4 0 1 ) )      M1

M3 =  ( 1 + 0 4 + 2 0 + 0 0 + 1 )       A2

M3 = ( 1 6 0 1 )     AG     N0

[3 marks]

b.ii.

M4 =  ( 1 8 0 1 )     A1     N1

[1 mark]

c.i.

T4 = ( 1 2 0 1 ) + ( 1 4 0 1 ) + ( 1 6 0 1 ) + ( 1 8 0 1 )     (M1)

( 4 20 0 4 )       A1A1    N3

[3 marks]

c.ii.

T100 = ( 1 2 0 1 ) + ( 1 4 0 1 ) + + ( 1 200 0 1 )     (M1)

= ( 100 10100 0 100 )      A1A1    N3

[3 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options