User interface language: English | Español

Date May Example question Marks available 2 Reference code EXM.1.AHL.TZ0.45
Level Additional Higher Level Paper Paper 1 Time zone Time zone 0
Command term Find Question number 45 Adapted from N/A

Question

Let A = ( 1 2 3 2 1 2 3 3 2 ) D = ( 4 13 7 2 7 4 3 9 5 ) , and C = ( 5 7 10 )

Given matrices A, B, C for which AB = C and det A ≠ 0, express B in terms of A and C.

[2]
a.

Find the matrix DA.

[1]
b.i.

Find B if AB = C.

[2]
b.ii.

Find the coordinates of the point of intersection of the planes  x + 2 y + 3 z = 5 2 x y + 2 z = 7 3 x 3 y + 2 z = 10 .

[2]
c.

Markscheme

Since det A ≠ 0, A–1 exists.     (M1)

Hence AB = C ⇒ B = A–1C          (C1)

[2 marks]

a.

DA ( 1 0 0 0 1 0 0 0 1 )           (A1)

[1 mark]

b.i.

B = A–1C = DC         (M1)

= ( 1 1 2 )          (A1)

[2 marks]

b.ii.

The system of equations is  x + 2 y + 3 z = 5 2 x y + 2 z = 7 3 x 3 y + 2 z = 10

or A ( x y z ) = C         (M1)

The required point = (1, –1, 2).         (A1)

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options