Processing math: 100%

User interface language: English | Español

Date May Example question Marks available 2 Reference code EXM.2.AHL.TZ0.10
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 10 Adapted from N/A

Question

Let A = (0220).

Let B = (p20q).

Find A−1.

[2]
a.i.

Find A2.

[2]
a.ii.

Given that 2A + B = (2643), find the value of p and of q.

[3]
b.

Hence find A−1B.

[2]
c.

Let X be a 2 × 2 matrix such that AX = B. Find X.

[2]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

A−1 = (012120)     A2  N2

[2 marks]

a.i.

A2 = (4004)     A2  N2

[2 marks]

a.ii.

(0440)+(p20q)=(2643)    (M1)

 p = 2, q = 3   A1A1   N3

b.

Evidence of attempt to multiply     (M1)

eg    A−1B = (012120)(2203)

A−1B = (03211)      (accept(012q12p1))        A1  N2

[2 marks]

c.

Evidence of correct approach    (M1)

eg    X = A−1B, setting up a system of equations

X = (03211)      (accept(012q12p1))        A1  N2

[2 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options