User interface language: English | Español

Date May Example question Marks available 2 Reference code EXM.2.AHL.TZ0.10
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 10 Adapted from N/A

Question

Let A = ( 0 2 2 0 ) .

Let B = ( p 2 0 q ) .

Find A−1.

[2]
a.i.

Find A2.

[2]
a.ii.

Given that 2A + B =  ( 2 6 4 3 ) , find the value of  p and of  q .

[3]
b.

Hence find A−1B.

[2]
c.

Let X be a 2 × 2 matrix such that AX = B. Find X.

[2]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

A−1 = ( 0 1 2 1 2 0 )      A2  N2

[2 marks]

a.i.

A2 = ( 4 0 0 4 )      A2  N2

[2 marks]

a.ii.

( 0 4 4 0 ) + ( p 2 0 q ) = ( 2 6 4 3 )    (M1)

  p = 2, q = 3   A1A1   N3

b.

Evidence of attempt to multiply     (M1)

eg    A−1B =  ( 0 1 2 1 2 0 ) ( 2 2 0 3 )

A−1B =  ( 0 3 2 1 1 )       ( accept ( 0 1 2 q 1 2 p 1 ) )         A1  N2

[2 marks]

c.

Evidence of correct approach    (M1)

eg    X = A−1B, setting up a system of equations

X = ( 0 3 2 1 1 )       ( accept ( 0 1 2 q 1 2 p 1 ) )         A1  N2

[2 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options