User interface language: English | Español

Date May Example question Marks available 6 Reference code EXM.1.AHL.TZ0.49
Level Additional Higher Level Paper Paper 1 Time zone Time zone 0
Command term Show that Question number 49 Adapted from N/A

Question

The square matrix X is such that X3 = 0. Show that the inverse of the matrix (I X) is I + X + X2.

Markscheme

For multiplying (IX)(I + X + X2)                   M1

= I2 + IX + IX2 – XI X2 – X3 = I + X + X2 – XX2 – X3       (A1)(A1)

= IX3                A1

= I              A1

AB = I ⇒ A–1 = B                  (R1)

(IX)(I + X + X2) = I ⇒ (IX)–1 = I + X + X2        AG N0 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 1—Number and algebra » AHL 1.14—Introduction to matrices
Show 139 related questions
Topic 1—Number and algebra

View options