User interface language: English | Español

Date May 2022 Marks available 6 Reference code 22M.1.AHL.TZ2.8
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number 8 Adapted from N/A

Question

A continuous random variable X has the probability density function

fx=2b-ac-ax-a,axc2b-ab-cb-x,c<xb0,otherwise.

The following diagram shows the graph of y=fx for axb.

Given that ca+b2, find an expression for the median of X in terms of a, b and c.

Markscheme

let m be the median


EITHER

attempts to find the area of the required triangle          M1

base is m-a          (A1)

and height is 2b-ac-am-a

area =12m-a×2b-ac-am-a  =m-a2b-ac-a         A1

 

OR

attempts to integrate the correct function          M1

am2b-ac-ax-adx

=2b-ac-a12x-a2am  OR  2b-ac-ax22-axam         A1A1

 

Note: Award A1 for correct integration and A1 for correct limits.

 

THEN

sets up (their) am2b-ac-ax-adx or area =12         M1

 

Note: Award M0A0A0M1A0A0 if candidates conclude that m>c and set up their area or sum of integrals =12.

 

m-a2b-ac-a=12

m=a±b-ac-a2         (A1)

 

as m>a, rejects m=a-b-ac-a2

so m=a+b-ac-a2         A1

  

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » SL 2.7—Solutions of quadratic equations and inequalities, discriminant and nature of roots
Show 47 related questions
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 4—Statistics and probability » AHL 4.14—Properties of discrete and continuous random variables
Topic 2—Functions
Topic 4—Statistics and probability
Topic 5 —Calculus

View options