Date | May 2022 | Marks available | 6 | Reference code | 22M.1.AHL.TZ2.8 |
Level | Additional Higher Level | Paper | Paper 1 (without calculator) | Time zone | Time zone 2 |
Command term | Find | Question number | 8 | Adapted from | N/A |
Question
A continuous random variable XX has the probability density function
f(x)={2(b-a)(c-a)(x-a),a≤x≤c2(b-a)(b-c)(b-x),c<x≤b0,otherwisef(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩2(b−a)(c−a)(x−a),a≤x≤c2(b−a)(b−c)(b−x),c<x≤b0,otherwise.
The following diagram shows the graph of y=f(x)y=f(x) for a≤x≤ba≤x≤b.
Given that c≥a+b2c≥a+b2, find an expression for the median of XX in terms of a, ba, b and cc.
Markscheme
let mm be the median
EITHER
attempts to find the area of the required triangle M1
base is (m-a)(m−a) (A1)
and height is 2(b-a)(c-a)(m-a)2(b−a)(c−a)(m−a)
area =12(m-a)×2(b-a)(c-a)(m-a) (=(m-a)2(b-a)(c-a))=12(m−a)×2(b−a)(c−a)(m−a) (=(m−a)2(b−a)(c−a)) A1
OR
attempts to integrate the correct function M1
m∫a2(b-a)(c-a)(x-a) dxm∫a2(b−a)(c−a)(x−a)dx
=2(b-a)(c-a)[12(x-a)2]ma=2(b−a)(c−a)[12(x−a)2]ma OR 2(b-a)(c-a)[x22-ax]ma2(b−a)(c−a)[x22−ax]ma A1A1
Note: Award A1 for correct integration and A1 for correct limits.
THEN
sets up (their) m∫a2(b-a)(c-a)(x-a) dxm∫a2(b−a)(c−a)(x−a)dx or area =12=12 M1
Note: Award M0A0A0M1A0A0 if candidates conclude that m>cm>c and set up their area or sum of integrals =12=12.
(m-a)2(b-a)(c-a)=12(m−a)2(b−a)(c−a)=12
m=a±√(b-a)(c-a)2m=a±√(b−a)(c−a)2 (A1)
as m>am>a, rejects m=a-√(b-a)(c-a)2m=a−√(b−a)(c−a)2
so m=a+√(b-a)(c-a)2m=a+√(b−a)(c−a)2 A1
[6 marks]