User interface language: English | Español

Date May 2022 Marks available 6 Reference code 22M.1.AHL.TZ2.8
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number 8 Adapted from N/A

Question

A continuous random variable XX has the probability density function

f(x)={2(b-a)(c-a)(x-a),axc2(b-a)(b-c)(b-x),c<xb0,otherwisef(x)=⎪ ⎪ ⎪⎪ ⎪ ⎪2(ba)(ca)(xa),axc2(ba)(bc)(bx),c<xb0,otherwise.

The following diagram shows the graph of y=f(x)y=f(x) for axbaxb.

Given that ca+b2ca+b2, find an expression for the median of XX in terms of a, ba, b and cc.

Markscheme

let mm be the median


EITHER

attempts to find the area of the required triangle          M1

base is (m-a)(ma)          (A1)

and height is 2(b-a)(c-a)(m-a)2(ba)(ca)(ma)

area =12(m-a)×2(b-a)(c-a)(m-a)  (=(m-a)2(b-a)(c-a))=12(ma)×2(ba)(ca)(ma)  (=(ma)2(ba)(ca))         A1

 

OR

attempts to integrate the correct function          M1

ma2(b-a)(c-a)(x-a)dxma2(ba)(ca)(xa)dx

=2(b-a)(c-a)[12(x-a)2]ma=2(ba)(ca)[12(xa)2]ma  OR  2(b-a)(c-a)[x22-ax]ma2(ba)(ca)[x22ax]ma         A1A1

 

Note: Award A1 for correct integration and A1 for correct limits.

 

THEN

sets up (their) ma2(b-a)(c-a)(x-a)dxma2(ba)(ca)(xa)dx or area =12=12         M1

 

Note: Award M0A0A0M1A0A0 if candidates conclude that m>cm>c and set up their area or sum of integrals =12=12.

 

(m-a)2(b-a)(c-a)=12(ma)2(ba)(ca)=12

m=a±(b-a)(c-a)2m=a±(ba)(ca)2         (A1)

 

as m>am>a, rejects m=a-(b-a)(c-a)2m=a(ba)(ca)2

so m=a+(b-a)(c-a)2m=a+(ba)(ca)2         A1

  

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » SL 2.7—Solutions of quadratic equations and inequalities, discriminant and nature of roots
Show 47 related questions
Topic 5 —Calculus » SL 5.11—Definite integrals, areas under curve onto x-axis and areas between curves
Topic 4—Statistics and probability » AHL 4.14—Properties of discrete and continuous random variables
Topic 2—Functions
Topic 4—Statistics and probability
Topic 5 —Calculus

View options