User interface language: English | Español

Date November 2020 Marks available 6 Reference code 20N.1.SL.TZ0.S_5
Level Standard Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number S_5 Adapted from N/A

Question

Let fx=-x2+4x+5 and gx=-fx+k.

Find the values of k so that gx=0 has no real roots.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1 – (discriminant)

correct expression for g      (A1)

eg    --x2+4x+5+k , x2-4x-5+k=0

evidence of discriminant      (M1)

eg    b2-4ac, Δ

correct substitution into discriminant of g      (A1)

eg    -42-41-5+k , 16-4k-5

recognizing discriminant is negative      (M1)

eg    Δ<0 , -42-41-5+k<0 , 16<4k-5 , 16-4-15<0

correct working (must be correct inequality)      (A1)

eg    -4k<-36 , k-5>4 , 16+20-4k<0

k>9        A1 N3

 

METHOD 2 – (transformation of vertex of f)

valid approach for finding fx vertex      (M1)

eg    -b2a=2 , f'x=0

correct vertex of fx      (A1)

eg    2, 9

correct vertex of -fx      (A1)

eg    2, -9

correct vertex of gx      (A1)

eg    2-9+0k , 2, -9+k

recognizing when vertex is above x-axis      (M1)

eg    -9+k>0, sketch

k>9        A1 N3

 

METHOD 3 – (transformation of f)

recognizing vertical reflection of fx      (M1)

eg    -fx , x2-4x-5 , sketch

correct expression for gx      (A1)

eg    x2-4x-5+k

valid approach for finding vertex of gx      (M1)

eg    -b2a=2 , g'x=0

correct y coordinate of vertex of gx      (A1)

eg    y=-9+k , 2, -9+k

recognizing when vertex is above x-axis      (M1)

eg    -9+k>0 , sketch

k>9        A1 N3

 

[6 marks]

Examiners report

[N/A]

Syllabus sections

Topic 2—Functions » SL 2.7—Solutions of quadratic equations and inequalities, discriminant and nature of roots
Show 47 related questions
Topic 2—Functions

View options