User interface language: English | Español

Date November 2021 Marks available 5 Reference code 21N.1.AHL.TZ0.7
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Find Question number 7 Adapted from N/A

Question

The equation 3px2+2px+1=p has two real, distinct roots.

Find the possible values for p.

[5]
a.

Consider the case when p=4. The roots of the equation can be expressed in the form x=a±136, where a. Find the value of a.

[2]
b.

Markscheme

attempt to use discriminant b2-4ac>0                M1

2p2-43p1-p>0

16p2-12p>0                (A1)

p4p-3>0

attempt to find critical values p=0, p=34                M1

recognition that discriminant >0                (M1)

p<0 or p>34                 A1


Note:
Condone ‘or’ replaced with ‘and’, a comma, or no separator

 

[5 marks]

a.

p=412x2+8x-3=0

valid attempt to use x=-b±b2-4ac2a (or equivalent)                M1

x=-8±20824

x=-2±136

a=-2                 A1

 

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 2—Functions » SL 2.7—Solutions of quadratic equations and inequalities, discriminant and nature of roots
Show 47 related questions
Topic 2—Functions

View options