DP Mathematics: Analysis and Approaches Questionbank

AHL 4.14—Properties of discrete and continuous random variables
Path: |
Description
[N/A]Directly related questions
-
20N.1.AHL.TZ0.H_1:
A discrete random variable X has the probability distribution given by the following table.
Given that E(X)=1912, determine the value of p and the value of q.
-
21M.2.AHL.TZ1.7a:
Show that √16+k-√k=√k√16+k.
-
21M.2.AHL.TZ2.6b:
Show that Var(X)=n+1(n+2)2(n+3).
-
21M.2.AHL.TZ2.6a:
Show that E(X)=n+1n+2.
-
21N.2.AHL.TZ0.7a:
Determine the value of m.
-
21N.2.AHL.TZ0.7b:
Given that P(|X-m|≤a)=0.3, determine the value of a.
-
22M.1.AHL.TZ1.7a:
Find the value of k.
-
22M.1.AHL.TZ1.7b:
Find E(X).
-
22M.1.AHL.TZ2.8:
A continuous random variable X has the probability density function
f(x)={2(b-a)(c-a)(x-a),a≤x≤c2(b-a)(b-c)(b-x),c<x≤b0,otherwise.
The following diagram shows the graph of y=f(x) for a≤x≤b.
Given that c≥a+b2, find an expression for the median of X in terms of a, b and c.
-
SPM.1.AHL.TZ0.7:
A continuous random variable X has the probability density function f given by
f(x)={πx36sin(πx6),0⩽x⩽60,otherwise.
Find P(0 ≤ X ≤ 3).
-
SPM.2.AHL.TZ0.6a:
Find E(T).
-
SPM.2.AHL.TZ0.6b:
Given that Var(X) = 0.8419, find Var(T).
-
18M.1.AHL.TZ1.H_3a:
Find the value of a and the value of b.
-
18M.1.AHL.TZ1.H_3b:
Find the expected value of T.
-
18M.2.AHL.TZ1.H_10a:
Show that a=23.
-
18M.2.AHL.TZ1.H_10b:
Find P(X<1).
-
18M.2.AHL.TZ1.H_10c:
Given that P(s<X<0.8)=2×P(2s<X<0.8), and that 0.25 < s < 0.4 , find the value of s.
-
17M.1.AHL.TZ1.H_10a:
Find the value of k.
-
17M.1.AHL.TZ1.H_10b.i:
By considering the graph of f write down the mean of X;
-
17M.1.AHL.TZ1.H_10b.ii:
By considering the graph of f write down the median of X;
-
17M.1.AHL.TZ1.H_10b.iii:
By considering the graph of f write down the mode of X.
-
17M.1.AHL.TZ1.H_10c.i:
Show that P(0⩽X⩽2)=14.
-
17M.1.AHL.TZ1.H_10c.ii:
Hence state the interquartile range of X.
-
17M.1.AHL.TZ1.H_10d:
Calculate P(X⩽4|X⩾3).
-
17M.2.AHL.TZ2.H_10a:
Show that a=32 and b=112.
-
17M.2.AHL.TZ2.H_10b:
Find E(X).
-
17M.2.AHL.TZ2.H_10c:
Find Var(X).
-
17M.2.AHL.TZ2.H_10d:
Find the median of X.
-
17M.2.AHL.TZ2.H_10e:
Find E(Y).
-
17M.2.AHL.TZ2.H_10f:
Find P(Y⩾3).
-
19M.2.AHL.TZ2.H_10a:
Find the probability that on a randomly selected day, Steffi does not visit Will’s house.
-
19M.2.AHL.TZ2.H_10b:
Copy and complete the probability distribution table for Y.
-
19M.2.AHL.TZ2.H_10c:
Hence find the expected number of times per day that Steffi is fed at Will’s house.
-
19M.2.AHL.TZ2.H_10d:
In any given year of 365 days, the probability that Steffi does not visit Will for at most n days in total is 0.5 (to one decimal place). Find the value of n.
-
19M.2.AHL.TZ2.H_10e:
Show that the expected number of occasions per year on which Steffi visits Will’s house and is not fed is at least 30.
-
16N.1.AHL.TZ0.H_2a:
Complete the probability distribution table for X.
-
16N.1.AHL.TZ0.H_2b:
Find the expected value of X.
-
16N.2.AHL.TZ0.H_1a:
Determine the value of E(X2).
-
16N.2.AHL.TZ0.H_1b:
Find the value of Var(X).
-
19N.1.AHL.TZ0.H_1a:
Find the value of p.
-
19N.1.AHL.TZ0.H_1b:
Given that E(X)=10, find the value of N.
-
19M.1.AHL.TZ2.H_10c.i:
dydx=xarcsinx.
-
19M.1.AHL.TZ2.H_10a:
State the mode of X.
-
19M.1.AHL.TZ2.H_10c.ii:
E(X)=3π4(π+2).
-
19M.1.AHL.TZ2.H_10b.i:
Find ∫arcsinxdx.
-
19M.1.AHL.TZ2.H_10b.ii:
Hence show that k=22+π.
-
17M.2.SL.TZ2.S_10a.i:
Find q.