User interface language: English | Español

Date November 2021 Marks available 3 Reference code 21N.2.AHL.TZ0.8
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Show that Question number 8 Adapted from N/A

Question

Consider the curve C given by y=x-xyln(xy) where x>0, y>0.

Show that dydx+xdydx+y1+lnxy=1.

[3]
a.

Hence find the equation of the tangent to C at the point where x=1.

[5]
b.

Markscheme

METHOD 1

attempts to differentiate implicitly including at least one application of the product rule                   (M1)

u=xy, v=lnxy, dudx=xdydx+y, dvdx=xdydx+y1xy

dydx=1-xyxyxdydx+y+xdydx+ylnxy                       A1


Note: Award (M1)A1 for implicitly differentiating y=x1-ylnxy and obtaining dydx=1-xyxyxdydx+y+xdydxlnxy+ylnxy.

 

dydx=1-xdydx+y+xdydx+ylnxy

dydx=1-xdydx+y1+lnxy                      A1

dydx+xdydx+y1+lnxy=1                      AG

 

METHOD 2

y=x-xylnx-xylny

attempts to differentiate implicitly including at least one application of the product rule                   (M1)

dydx=1-xyx+xdydx+ylnx-xyydydx+xdydx+ylny                      A1

or equivalent to the above, for example

dydx=1-xlnxdydx+1+lnxy-ylny+xlnydydx+dydx

dydx=1-xdydxlnx+lny+1-ylnx+lny+1                      A1

or equivalent to the above, for example

dydx=1-xdydxlnxy+1-ylnxy+1

dydx+xdydx+y1+lnxy=1                      AG

 

METHOD 3

attempt to differentiate implicitly including at least one application of the product rule             M1

u=xlnxy, v=y, dudx=lnxy+xdydx+yxxy, dvdx=dydx

dydx=1-xdydxlnxy+ylnxy+xyxyxdydx+y                      A1

dydx=1-xdydxlnxy+1-ylnxy+1                      A1

dydx+xdydx+y1+lnxy=1                      AG

 

METHOD 4

lets w=xy and attempts to find dydx where y=x-wlnw             M1

dydx=1-dwdx+dwdxlnw =1-dwdx1+lnw                      A1

dwdx=xdydx+y                      A1

dydx=1-xdydx+y+xdydx+ylnxy  =1-xdydx+y1+lnxy

dydx+xdydx+y1+lnxy=1                      AG

 

[3 marks]

a.

METHOD 1

substitutes x=1 into y=x-xylnxy                  (M1)

y=1-ylnyy=1                       A1

substitutes x=1 and their non-zero value of y into dydx+xdydx+y1+lnxy=1                  (M1)

2dydx=0  dydx=0                       A1

equation of the tangent is y=1                       A1

 

METHOD 2

substitutes x=1 into dydx+xdydx+y1+lnxy=1                 (M1)

dydx+dydx+y1+lny=1


EITHER

correctly substitutes lny=1-yy into dydx+dydx+y1+lnxy=1                       A1

dydx1+1y=0dydx=0 y=1                       A1


OR

correctly substitutes y+ylny=1 into dydx+dydx+y1+lnxy=1                       A1

dydx2+lny=0dydx=0 y=1                       A1


THEN

substitutes x=1 into y=x-xylnxy                 (M1)

y=1-ylnyy=1

equation of the tangent is y=1                       A1

 

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » SL 5.4—Tangents and normal
Show 95 related questions
Topic 5 —Calculus » AHL 5.14—Implicit functions, related rates, optimisation
Topic 5 —Calculus

View options