User interface language: English | Español

Date November Example questions Marks available 4 Reference code EXN.2.AHL.TZ0.6
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Find Question number 6 Adapted from N/A

Question

The curve C has equation e2y=x3+y.

Show that dydx=3x22e2y-1.

[3]
a.

The tangent to C at the point Ρ is parallel to the y-axis.

Find the x-coordinate of Ρ.

[4]
b.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

attempts implicit differentiation on both sides of the equation        M1

2e2ydydx=3x2+dydx        A1

2e2y-1dydx=3x2        A1

so dydx=3x22e2y-1        AG

 

[3 marks]

a.

attempts to solve 2e2y-1=0 for y        (M1)

y=-0.346 =12ln12        A1

attempts to solve e2y=x3+y for x given their value of y        (M1)

x=0.946 =121-ln1213        A1

 

[4 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » SL 5.4—Tangents and normal
Show 95 related questions
Topic 5 —Calculus » AHL 5.14—Implicit functions, related rates, optimisation
Topic 5 —Calculus

View options