Processing math: 100%

User interface language: English | Español

Date May 2019 Marks available 4 Reference code 19M.2.AHL.TZ1.H_1
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number H_1 Adapted from N/A

Question

Let l be the tangent to the curve y=xe2x at the point (1, e2).

Find the coordinates of the point where l meets the x-axis.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

equation of tangent is y=22.167x14.778  OR  y=7.389=22.167(x1)       (M1)(A1)

meets the x-axis when y=0

x=0.667

meets x-axis at (0.667, 0)(=(23,0))       A1A1

Note: Award A1 for x=23 or x=0.667 seen and A1 for coordinates (x, 0) given.

 

METHOD 1

Attempt to differentiate       (M1)

dydx=e2x+2xe2x

when x=1dydx=3e2       (M1)

equation of the tangent is ye2=3e2(x1)

y=3e2x2e2

meets x-axis at x=23

(23,0)       A1A1

Note: Award A1 for x=23 or x=0.667 seen and A1 for coordinates (x, 0) given.

 

[4 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » SL 5.1—Introduction of differential calculus
Show 36 related questions
Topic 5 —Calculus » SL 5.4—Tangents and normal
Topic 5 —Calculus » AHL 5.12—First principles, higher derivatives
Topic 5 —Calculus

View options