User interface language: English | Español

Date May 2017 Marks available 4 Reference code 17M.2.AHL.TZ1.H_2
Level Additional Higher Level Paper Paper 2 Time zone Time zone 1
Command term Find Question number H_2 Adapted from N/A

Question

The curve C is defined by equation x y ln y = 1 ,   y > 0 .

Find d y d x in terms of x and y .

[4]
a.

Determine the equation of the tangent to C at the point ( 2 e ,  e )

[3]
b.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

y + x d y d x 1 y d y d x = 0      M1A1A1

 

Note:     Award A1 for the first two terms, A1 for the third term and the 0.

 

d y d x = y 2 1 x y      A1

 

Note:     Accept y 2 ln y .

 

Note:     Accept y x 1 y .

 

[4 marks]

a.

m T = e 2 1 e × 2 e      (M1)

m T = e 2      (A1)

y e = e 2 x + 2 e

e 2 x y + 3 e = 0 or equivalent     A1

 

Note:     Accept y = 7.39 x + 8.15 .

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.

Syllabus sections

Topic 5 —Calculus » SL 5.1—Introduction of differential calculus
Show 36 related questions
Topic 5 —Calculus » SL 5.3—Differentiating polynomials, n E Z
Topic 5 —Calculus » SL 5.4—Tangents and normal
Topic 5 —Calculus » AHL 5.12—First principles, higher derivatives
Topic 5 —Calculus » AHL 5.14—Implicit functions, related rates, optimisation
Topic 5 —Calculus

View options