User interface language: English | Español

Date November 2017 Marks available 8 Reference code 17N.1.AHL.TZ0.H_11
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 0
Command term Show that Question number H_11 Adapted from N/A

Question

Consider the function f n ( x ) = ( cos 2 x ) ( cos 4 x ) ( cos 2 n x ) ,   n Z + .

Determine whether f n is an odd or even function, justifying your answer.

[2]
a.

By using mathematical induction, prove that

f n ( x ) = sin 2 n + 1 x 2 n sin 2 x ,   x m π 2 where m Z .

[8]
b.

Hence or otherwise, find an expression for the derivative of f n ( x ) with respect to x .

[3]
c.

Show that, for n > 1 , the equation of the tangent to the curve y = f n ( x ) at x = π 4 is 4 x 2 y π = 0 .

[8]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

even function     A1

since cos k x = cos ( k x ) and f n ( x ) is a product of even functions     R1

OR

even function     A1

since ( cos 2 x ) ( cos 4 x ) = ( cos ( 2 x ) ) ( cos ( 4 x ) )     R1

 

Note:     Do not award A0R1.

 

[2 marks]

a.

consider the case n = 1

sin 4 x 2 sin 2 x = 2 sin 2 x cos 2 x 2 sin 2 x = cos 2 x     M1

hence true for n = 1     R1

assume true for n = k , ie, ( cos 2 x ) ( cos 4 x ) ( cos 2 k x ) = sin 2 k + 1 x 2 k sin 2 x     M1

 

Note:     Do not award M1 for “let n = k ” or “assume n = k ” or equivalent.

 

consider n = k + 1 :

f k + 1 ( x ) = f k ( x ) ( cos 2 k + 1 x )     (M1)

= sin 2 k + 1 x 2 k sin 2 x cos 2 k + 1 x     A1

= 2 sin 2 k + 1 x cos 2 k + 1 x 2 k + 1 sin 2 x     A1

= sin 2 k + 2 x 2 k + 1 sin 2 x     A1

so n = 1 true and n = k true n = k + 1 true. Hence true for all n Z +     R1

 

Note:     To obtain the final R1, all the previous M marks must have been awarded.

 

[8 marks]

b.

attempt to use f = v u u v v 2 (or correct product rule)     M1

f n ( x ) = ( 2 n sin 2 x ) ( 2 n + 1 cos 2 n + 1 x ) ( sin 2 n + 1 x ) ( 2 n + 1 cos 2 x ) ( 2 n sin 2 x ) 2     A1A1

 

Note:     Award A1 for correct numerator and A1 for correct denominator.

 

[3 marks]

c.

f n ( π 4 ) = ( 2 n sin π 2 ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( sin 2 n + 1 π 4 ) ( 2 n + 1 cos π 2 ) ( 2 n sin π 2 ) 2     (M1)(A1)

f n ( π 4 ) = ( 2 n ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( 2 n ) 2     (A1)

= 2 cos 2 n + 1 π 4   ( = 2 cos 2 n 1 π )     A1

f n ( π 4 ) = 2     A1

f n ( π 4 ) = 0     A1

 

Note:     This A mark is independent from the previous marks.

 

y = 2 ( x π 4 )     M1A1

4 x 2 y π = 0     AG

[8 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 5 —Calculus » SL 5.4—Tangents and normal
Show 95 related questions
Topic 2—Functions » AHL 2.14—Odd and even functions, self-inverse, inverse and domain restriction
Topic 1—Number and algebra » AHL 1.15—Proof by induction, contradiction, counterexamples
Topic 1—Number and algebra
Topic 2—Functions
Topic 5 —Calculus

View options