Processing math: 100%

User interface language: English | Español

Date November 2018 Marks available 5 Reference code 18N.2.AHL.TZ0.H_5
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Differentiate Question number H_5 Adapted from N/A

Question

Differentiate from first principles the function f(x)=3x3x.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

f(x+h)f(x)h

=(3(x+h)3(x+h))(3x3x)h    M1

=3(x3+3x2h+3xh2+h3)xh3x3+xh     (A1)

=9x2h+9xh2+3h3hh      A1

cancelling h      M1

=9x2+9xh+3h21

then limh0(9x2+9xh+3h21)

=9x21      A1

Note: Final A1 dependent on all previous marks.

 

METHOD 2

f(x+h)f(x)h

=(3(x+h)3(x+h))(3x3x)h    M1

=3((x+h)3x3)+(x(x+h))h       (A1)

=3h((x+h)2+x(x+h)+x2)hh      A1

cancelling h      M1

=3((x+h)2+x(x+h)+x2)1

then limh0(3((x+h)2+x(x+h)+x2)1)

=9x21      A1

Note: Final A1 dependent on all previous marks.

 

[5 marks]

 

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » SL 5.1—Introduction of differential calculus
Show 36 related questions
Topic 5 —Calculus » SL 5.4—Tangents and normal
Topic 5 —Calculus » AHL 5.12—First principles, higher derivatives
Topic 5 —Calculus

View options