User interface language: English | Español

Date November 2018 Marks available 5 Reference code 18N.2.AHL.TZ0.H_5
Level Additional Higher Level Paper Paper 2 Time zone Time zone 0
Command term Differentiate Question number H_5 Adapted from N/A

Question

Differentiate from first principles the function f ( x ) = 3 x 3 x .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

f ( x + h ) f ( x ) h

= ( 3 ( x + h ) 3 ( x + h ) ) ( 3 x 3 x ) h     M1

= 3 ( x 3 + 3 x 2 h + 3 x h 2 + h 3 ) x h 3 x 3 + x h      (A1)

= 9 x 2 h + 9 x h 2 + 3 h 3 h h       A1

cancelling  h       M1

= 9 x 2 + 9 x h + 3 h 2 1

then lim h 0 ( 9 x 2 + 9 x h + 3 h 2 1 )

= 9 x 2 1       A1

Note: Final A1 dependent on all previous marks.

 

METHOD 2

f ( x + h ) f ( x ) h

= ( 3 ( x + h ) 3 ( x + h ) ) ( 3 x 3 x ) h    M1

= 3 ( ( x + h ) 3 x 3 ) + ( x ( x + h ) ) h        (A1)

= 3 h ( ( x + h ) 2 + x ( x + h ) + x 2 ) h h       A1

cancelling  h       M1

= 3 ( ( x + h ) 2 + x ( x + h ) + x 2 ) 1

then  lim h 0 ( 3 ( ( x + h ) 2 + x ( x + h ) + x 2 ) 1 )

= 9 x 2 1       A1

Note: Final A1 dependent on all previous marks.

 

[5 marks]

 

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » SL 5.1—Introduction of differential calculus
Show 36 related questions
Topic 5 —Calculus » SL 5.4—Tangents and normal
Topic 5 —Calculus » AHL 5.12—First principles, higher derivatives
Topic 5 —Calculus

View options