User interface language: English | Español

Date November 2020 Marks available 2 Reference code 20N.2.SL.TZ0.S_8
Level Standard Level Paper Paper 2 Time zone Time zone 0
Command term Calculate Question number S_8 Adapted from N/A

Question

The following diagram shows a water wheel with centre O and radius 10 metres. Water flows into buckets, turning the wheel clockwise at a constant speed.


The height, h metres, of the top of a bucket above the ground t seconds after it passes through point A is modelled by the function

ht=13+8cosπ18t-6sinπ18t, for t0.

A bucket moves around to point B which is at a height of 4.06 metres above the ground. It takes k seconds for the top of this bucket to go from point A to point B.

The chord [AB] is 17.0 metres, correct to three significant figures.

Find the height of point A above the ground.

[2]
a.i.

Calculate the number of seconds it takes for the water wheel to complete one rotation.

[2]
a.ii.

Hence find the number of rotations the water wheel makes in one hour.

[2]
a.iii.

Find k.

[3]
b.

Find AO^B.

[3]
c.

Determine the rate of change of h when the top of the bucket is at B.

[2]
d.

Markscheme

valid approach     (M1)

eg      h0, 13+8cosπ18×0-6sinπ18×0, 13+8×1-6×0

21 (metres)      A1   N2

[2 marks]

a.i.

valid approach to find the period (seen anywhere)    (M1)

eg      36, 21, attempt to find two consecutive max/min, 50.3130-14.3130

          2ππ18, b=2πperiod,

36 (seconds) (exact)      A1   N2

[2 marks]

a.ii.

correct approach   (A1)

eg      60×6036, 1.6666 rotations per minute

100 (rotations)      A1   N2

[2 marks]

a.iii.

correct substitution into equation (accept the use of t)       (A1)

eg      4.06=13+8cosπ18×k-6sinπ18×k

valid attempt to solve their equation       (M1)

eg      

11.6510

11.7      A1   N3

[3 marks]

b.

METHOD 1

evidence of choosing the cosine rule or sine rule       (M1)

eg      AB2=OA2+OB2-2×OA×OBcosAO^B, sinAO^BAB=sinOA^BOB

correct working       (A1)

eg      cosAO^B=102+102-17.022×10×10, -0.445, sinAO^B17.0=sinπ2-12AO^B10,

         sinOA^B10=sinπ-2×OA^B17.0

2.03197 , 116.423°

2.03   116°      A1   N3

 

METHOD 2

attempt to find the half central angle       (M1)

eg      sin12AO^B=12ABOA

correct working       (A1)

eg      2×sin-18.510

2.03197 , 116.423°

2.03   116°      A1   N3

 

METHOD 3

valid approach to find fraction of period       (M1)

eg      k36, 11.651036

correct approach to find angle       (A1)

eg      k36×2π

2.03348, 116.510°   (2.04203 using 11.7)

2.03   117°      A1   N3

 

[3 marks]

c.

recognizing rate of change is h'       (M1)

eg      h'k, h'11.6510 , 0.782024

-0.782024  (-0.768662 from 3 sf )

rate of change is -0.782 ms-1    A1   N2

(-0.769 ms-1 from 3 sf )

[2 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.
[N/A]
c.
[N/A]
d.

Syllabus sections

Topic 3— Geometry and trigonometry » SL 3.7—Circular functions: graphs, composites, transformations
Show 89 related questions
Topic 3— Geometry and trigonometry

View options